
Whittaker coefficients of
automorphic forms and applications

to analytic Number Theory

by
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Abstract

The formalism of automorphic representations makes the study of automorphic

forms amenable to representation-theoretic methods. In particular the Whittaker

model, when it exists, permits to extract interesting arithmetic and analytic informa-

tion. In this thesis, we give two instances of this principle, in which we are concerned

respectively with a) bounding the values taken by and b) the distribution of the

Satake parameters of certain automorphic forms.

In the first part of this thesis, carried out in Chapter 1, we study the problem of

bounding the sup norms of L2-normalized cuspidal automorphic newforms ϕ on GL2

in the level aspect. Prior to this work, strong upper bounds were only available if

the central character χ of ϕ is not too highly ramified. We establish a uniform upper

bound in the level aspect for general χ. If the level N is a square, our result reduces

to

∥ϕ∥∞ ≪ N
1
4
+ϵ,

at least under the Ramanujan Conjecture. In particular, when χ has conductor N ,

this improves upon the previous best known bound ∥ϕ∥∞ ≪ N
1
2
+ϵ in this setup (due

to Saha) and matches a lower bound due to Templier, thus our result is essentially

optimal in this case.
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4 ABSTRACT

In the second and more substantial part, carried out in Chapter 2, we develop a

Kuznetsov type formula for the group GSp4. To this end, we follow a relative trace

formula approach, and we focus on giving a final formula that is as explicit as possible.

In particular, our formula is valid for arbitrary level, arbitrary central character, and

includes the Hecke eigenvalues. We then use this Kuznetsov formula in Chapter 3 to

show that, as the level tends to infinity, the Satake parameters of automorphic forms

on GSp4, suitably weighted, equidistribute with respect to the Sato-Tate measure.
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General Introduction

Historically, Fourier’s concern in studying trigonometric series was analytical

in nature. One of his main discoveries is that an arbitrary piecewise continuous,

periodic function on the reals can be expressed as a Fourier series. Since then, his

results were vastly extended and generalised in numerous frameworks. Other areas of

mathematics, such as algebra, topology and representation theory, were brought in,

providing reinterpretations of Fourier theory from different perspectives and bearing

with them new interests. While recovering a function via its “Fourier coefficients” is

still an important motivation, Fourier theory has been generalised to new situations

where this is not always possible.

One such generalisation is the notion of Whittaker coefficients of automorphic

forms. Thanks to the close relationship between automorphic forms and the theory of

representations, the Whittaker coefficients can be interpreted from a representation

theoretic point of view, which in turn has consequences for number theory.

Let us give an overview of this principle. Let ϕ be an automorphic form for a

connected reductive algebraic group G over a global field F . The right translates of ϕ

by G(AF ) (the group of adelic points of G) generate a certain representation π. It is

sufficient to consider the case when this representation π is irreducible. Now π may

(or may not) have a (global) Whittaker model. On the other hand, the Whittaker

11



12 GENERAL INTRODUCTION

coefficient W(ϕ) of ϕ is a function on G(AF ) which is given by definition by a certain

period integral of ϕ generalising the usual definition of Fourier coefficients. From

the definition, it satisfies some invariance properties that guarantee that the map

ϕ 7→ W(ϕ), if not identically zero, takes value in a Whittaker model of π. We say

that π is globally generic if {W(ϕ) : ϕ ∈ π} is non-zero. We henceforth assume this

is the case.

It is known by the Flath tensor product theorem that π is isomorphic to a

restricted tensor product over all places v of F of local representations πv of G(Fv):

π ≃
⊗

v πv. The fact that π has a global Whittaker model immediately implies that

each representation πv has a local Whittaker model. The key point is that Whittaker

models are (usually) well-behaved. Namely, assume that each local representation πv

has a unique Whittaker model. Then this implies that the global Whittaker model

is itself unique, and moreover if ϕ ∈ π corresponds to a pure tensor
⊗

v ϕv, then

we have W(ϕ)(g) =
∏

vWv(ϕv)(gv) for all g ∈ G(AF ), where Wv is an isomorphism

between πv and its local Whittaker model. This factorization property is important

for number theory. Indeed, it provides an instance of a local-global principle as well

as a connection with L-functions, as we shall see below in more details.

Now let us sketch how understanding the Whittaker coefficients can shed light

on different aspects of automorphic forms. Firstly, when a Whittaker expansion

is available, knowledge of the Whittaker coefficients of ϕ enables one to access

information on ϕ itself. While the Whittaker coefficients of ϕ are a rather mysterious

global object, one can study the local Whittaker coefficients, which “only” depend on

the corresponding local representation theory. Using the factorisation property, one



GENERAL INTRODUCTION 13

may be able to derive some useful information on the global Whittaker coefficients.

This is an instance of a local to global principle. An important question which can be

tackled this way is that of bounding the sup norm of ϕ. This question is addressed in

the case of automorphic newforms for GL2(Q) in Chapter 1 of this thesis. Note that

in general the non-vanishing of Whittaker coefficients of ϕ is not automatic, and even

if this is the case, it also does not guarantee that a Whittaker expansion is available

for ϕ. For instance a Whittaker expansion in the traditional sense is not available for

automorphic forms on GSp4 even if they are generic.

Secondly, the factorization property provides some insight that the Whittaker

coefficients “should” be related to L-functions. This is well known in the case of GL2,

where the local Whittaker coefficients of a Hecke newform ϕ coincide at unramified

place with its Hecke eigenvalues, which are themselves the Dirichlet coefficients of

the L-function attached to ϕ. In the situation of GSp4, the Whittaker coefficients

no longer coincide with the Hecke eigenvalues though they are closely related. If the

Hecke eigenvalues can’t be “directly” accessed through the Whittaker coefficients, they

both are dictated by the Satake parameters. It is thus interesting to use the Whittaker

coefficients to study some questions concerning the Satake parameters themselves.

Two important questions concerning the Satake parameters of automorphic forms

are their size and their distribution. In Chapter 3, we investigate the latter question

for GSp4(Q).

Instead of studying the Whittaker coefficients of a single automorphic form,

one can rather study the Whittaker coefficients of automorphic forms in a given

collection. When this collection consists of automorphic forms occurring in the
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spectral decomposition of a suitable space, a classical tool is the theory of relative

trace formulae. One may consider the spectral expansion of a certain automorphic

kernel, and take the Whittaker coefficients thereof. Using the Bruhat decomposition,

one can equate this spectral term to a “geometric term”. In Chapter 2, we follow

this approach to develop a Kuznetsov formula for the group GSp4(Q), on which our

study of Satake parameters in Chapter 3 is based. Because the Kuznetsov formula is

a central tool in analytic number theory, we believe Chapter 2 has its interest of its

own, and we expect it can be used to tackle other applications in the future.

In addition to being a tool for studying the Whittaker coefficients of automorphic

forms, relative trace formulae also provide a newmotivation for studying them. Indeed,

the geometric side involves some (generalised) Kloosterman sums, whose definition

comes from the Bruhat decomposition, and this connection between Whittaker

coefficients and Kloosterman sums furnishes new ways of analysing the latter (this

line of investigation is not tackled in this thesis). The GL2 Kloosterman sum are

classical and naturally arise in other problems of number theory, and more generally

for GLn, the Kloosterman sums attached to the Weyl element
[

1
In−1

]
are hyper-

Kloosterman sums, but it seems that in more general situations the Kloosterman

sums do not occur “naturally” outside of the setting of relative trace formulae.



CHAPTER 1

Sup norm bounds for newforms on GL2

1. Introduction

Let ϕ be a cuspidal automorphic form on GL2(AQ) with conductor N =
∏

p p
np and

central character χ. Assume in addition ϕ is a newform, in the sense that there exists

either a Maaß or holomorphic cuspidal newform f of weight k for Γ1(N) such that for

all g ∈ SL2(R) we have ϕ(g) = j(g, i)−kf(g · i), where as usual j(g, z) = cz + d for

g =

a b

c d

 ∈ SL2(R) and z ∈ H. In particular, ϕ is bounded and has a finite L2 norm,

hence one may be interested in asking how its L∞ and its L2 norm relate. In the

level aspect, one traditionally asks for bounds for ∥ϕ∥∞ = supg |ϕ(g)| = supz |y
k
2 f(z)|

depending on N as ∥ϕ∥2 is fixed. Subsequent investigations have shown that it is

relevant for this problem to also take into account the conductor C =
∏

p p
cp of χ.

Assuming that ϕ is L2-normalized, the “trivial bound” is

(1.1) 1 ≪ ∥ϕ∥∞ ≪ N
1
2
+ϵ

for any ϵ > 0. Here and below, the implied constant may depend on ϵ and on the

archimedean parameters of ϕ. The upper bound in (1.1) does not appear to have

been written down previously for general N and C, but it can be deduced from the

main result of [Sah17] for instance.

15
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For squarefree N , the first non-trivial upper bound is due to Blomer and Holowin-

sky [BH10], and has been subject to several improvements by Harcos and Templier

(and some unpublished work of Helfgott and Ricotta) culminating with the result

of [HT13] which achieves the upper bound N
1
3
+ϵ. For non-squarefree N , the best

result to date is due to Saha [Sah17], but it significantly improves on the trivial

bound only when χ is not highly ramified (here and elsewhere we say χ is highly

ramified if cp > ⌈np

2
⌉ for some prime p). Indeed, if χ is not highly ramified and N is

a perfect square, then Saha’s result [Sah17] gives an upper bound of N
1
4
+ϵ. Recent

work of Hu and Saha (see [HS20], especially the last paragraph of their introduction)

suggests that this bound may be further improved in the compact case. On the other

hand, if N = C and if N is a perfect square, then Saha’s result [Sah17] reduces to

the trivial bound (1.1).

Templier was the first to provide evidence that the actual size of ∥ϕ∥∞ may depend

on how ramified χ is. Namely, he proved in [Tem14] that whenever N = C we have

(1.2) ∥ϕ∥∞ ≫ N−ϵ
∏
pnp∥N

p
1
2
⌊np

2
⌋.

In particular, if N is a square, then

∥ϕ∥∞ ≫ N
1
4
−ϵ.

We shall prove the following comparable upper bound, which improves on [Sah17]

when χ is highly ramified.

Theorem 1.1.1. Let π be an unitary cuspidal automorphic representation of

GL2(AQ) with central character ωπ. Let N =
∏

p p
np be the conductor of π. Let ϕ ∈ π
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be an L2-normalized newform. Then

∥ϕ∥∞ ≪ϵ,π∞ N δ+ϵ
∏
p|N

p
1
2
⌈np

2
⌉,

where δ is any bound towards the Ramanujan Conjecture for π.

Theorem 1.1.1 provides for the first time non-trivial upper bounds for general N

that do not get worse when the conductor C varies. As a point of comparison, the

main result of [Sah17] had an additional factor of
∏

p p
max{0,cp−⌈np

2
⌉}, which is larger

than one precisely when χ is highly ramified. Furthermore, for C = N , in view of the

lower bound (1.2) and assuming the Ramanujan Conjecture, our result is essentially

optimal when N is a square. Note that the Ramanujan Conjecture is known by

work of Deligne and Serre for ϕ arising from a holomorphic cusp form, and otherwise

δ = 7
64

is admissible [Kim03].

Remark 1.1.1. In [Sah17], the appeal to a bound towards the Ramanujan

Conjecture is avoided by using Hölder inequality to estimate separately L2 averages

of the Whittaker newforms at primes at which the central character is ramified and

moments of the coefficients λπ of the L-function attached to π. However, in our

situation, we want to exploit the fact that the Whittaker coefficients are supported on

arithmetic progressions of modulus L, say, as explained later. A similar technique

as in [Sah17] would thus lead us to estimate moments of λπ on these arithmetic

progressions. One might expect that these moments are approximately L times

smaller than the full moments, but such a result does not seem to be available. Hence,

if we were to bound them by positivity by the full moments, we would expect an over-

estimate of same order as L. Since estimates are known by Rankin-Selberg theory up
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to the eighth moments, and, as we shall see, L ≤
∏

cp>
np
2
p⌊

np
2
⌋, one should be able

to replace N δ in Theorem 1.1.1 with
∏

cp>
np
2
p

1
8
⌊np

2
⌋, similarly as in Theorem 1.1 of

[HNS19]. As pointed out by Andy Booker, with more work one can also interpolate

between N δ and the eighth moments estimate, which leads to a better bound. However,

for the sake of brevity, we do not carry out these arguments.

The lower bound (1.2) has been generalized by Saha in [Sah16] and subsequently

by Assing in [Ass19b]. When χ is not maximally ramified, there is still a gap

between the best known lower bound and the upper bound from Theorem 1.1.1.

Finally, let us mention that the hybrid bounds over Q in [Sah17], which combines

the Whittaker expansion with some amplification, still beats our result when χ is not

highly ramified. For hybrid bounds over general number fields, we refer to the work

of Assing [Ass17,Ass19a].

The proof proceeds by using Whittaker expansion to reduce the problem of

bounding ϕ to that of understanding the local newforms attached to ϕ. By making

use of the invariances of ϕ, we can restrict ourselves to evaluate these local newforms in

the Whittaker model on some convenient cosets. The values of these local newforms

have been computed [Ass19b,Ass19a] by using a “basic identity” derived from the

Jacquet-Langlands local functional equations which was first expressed in this form

in [Sah16]. In the non maximally ramified case, local bounds are slightly weaker

than needed to obtain our result, and we take advantage of strong L2-bounds due to

Saha [Sah17] instead.
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Actually, we are using the Whittaker expansion of a certain translate of ϕ, the “bal-

anced newform”. The main feature is that it is supported on arithmetic progressions,

which enables us to get some savings. Though we are working adelically, this fact can

also be seen classically by computing the Fourier expansion of the corresponding cusp

form at cusps of large width. The situation is somewhat analogous to [HNS19], where

the authors also get Whittaker expansions supported on arithmetic progressions.

Let us explain this analogy in the maximally ramified case – in which we get

optimal upper bounds. As we shall see, in this case each local representation with

ramified central character is of the form χ1 ⊞χ2, where χ1 has exponent of conductor

np and χ2 is unramified. Then the local balanced newform for π is a twist of the

local balanced newform for χ1χ
−1
2 ⊞ 1. For representations of this type, the local

balanced newform coincides with the p-adic microlocal lift as defined in [Nel18]. Now

as explained in [HNS19], the microlocal lift is the split analogue of the minimal

vectors used there. Therefore the fact that we get optimal sup norm bounds in this

case is the direct analogue of Theorem 1.1 of [HNS19] which gives an optimal sup

norm bound for automorphic forms of minimal type.

It is worth noticing that [HNS19], [Sah20] as well as the present work provide

instances of the seemingly general principle according to which when considering

very localized vectors, one is able to establish very good and sometimes optimal

upper bounds. This is even the case when a Whittaker expansion is not available, as

in [Sah20].

The analysis of local newforms is given in Section 2. The proof of Theorem 1.1.1

is given in Section 3.
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2. Local bounds

In this section, F will denote a non-archimedean local field of characteristic zero

with residue field Fq. Let o denote the ring of integers of F and p its maximal ideal

with uniformizer tp. The discrete valuation associated to F will be denoted by vp. We

define U(0) = o×, and for k ≥ 1, U(k) = 1 + pk. We fix an additive unitary character

ψ of F with conductor o. In the sequel, the Whittaker models given will be those

with respect to ψ.

2.1. Generalities.

2.1.1. Double coset decomposition. Let G = GL2(F ), K = GL2(o). For x ∈ F

and y ∈ F×, consider the following elements

w =

 0 1

−1 0

 , a(y) =
y 0

0 1

 , n(x) =
1 x

0 1

 , z(y) =
y 0

0 y

 .
Then define the following subgroups

N = n(F ), A = a(F×), Z = z(F×),

and, for a an ideal of o,

(1.3) K(1)(a) = K ∩

1 + a o

a o

 , K(2)(a) = K ∩

o o

a 1 + a

 .
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Note that for a = pn, with n a non-negative integer, we have

(1.4) K(2)(pn) =

 1

tnp

K(1)(pn)

 1

tnp

−1

.

From [Sah16, Lemma 2.13], for any integer n ≥ 0 we have the following double coset

decomposition

(1.5) G =
∐
m∈Z

n∐
ℓ=0

∐
ν∈o×/(1+pℓn )

ZNgm,ℓ,νK
(1)(pn),

where ℓn = min{ℓ, n− ℓ}, and

gm,ℓ,ν = a(tmp )wn(t
−ℓ
p ν)

=

 0 tmp

−1 −t−ℓp ν

 .
Definition 1.2.1. Assume n ≥ 0 is a fixed integer. Then for any g ∈ G we define

(m(g), ℓ(g), ν(g)) ∈ Z× {0, · · · , n} × o×/(1 + pℓ(g)n)

as the unique triple such that

g ∈ ZNgm(g),ℓ(g),ν(g)K
(1)(pn).

Remark 1.2.1. Any g ∈ GL2(F ) belongs to some ZNa(y)κ where κ =

a b

c d

 ∈

GL2(o). Then by Remark 2.1 of [Sah17], we have ℓ(g) = min{vp(c), n} and m(g) =

vp(y)− 2ℓ(g). In particular, if g is already an element of GL2(o), then g is in a coset

of the form g−2j,j,∗.
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Now we determine the double cosets corresponding to certain elements of interest

for the global application.

Lemma 1.2.1. Consider two integers 0 ≤ e ≤ n. Let g ∈ GL2(o)a(t
e
p). Then there

exist a non-negative integer ℓ ≤ n and ν ∈ o× such that one of the following holds

(1) either ℓ ≤ e and g ∈ ZNg−e,ℓ,νK
(1)(pn),

(2) or e < ℓ ≤ n and g ∈ ZNg−2ℓ+e,ℓ,νK
(1)(pn),

where the subgroup K(1)(pn) is defined in (1.3).

Proof. We know by (1.5) that g ∈ ZNgm,ℓ,νk1 for some k1 ∈ K(1)(pn) hence

gk−1
1 a(t−ep ) ∈ ZNgm,ℓ,νa(t

−e
p ).

Since g ∈ Ka(tep), it follows that gk
−1
1 a(t−ep ) ∈ K. By Remark 1.2.1, it is then in the

coset of some g−2j,j,∗ with 0 ≤ j ≤ n. On the other hand,

gm,ℓ,νa(t
−e
p ) = a(tmp )wn(t

−ℓ
p ν)a(t−ep )

= a(tmp )wa(t
−e
p )n(te−ℓp ν)

= t−ep a(tm+e
p )wn(te−ℓp ν).

If ℓ ≤ e then

wn(te−ℓp ν) =

 1

−1 −te−ℓp ν

 ∈ GL2(o)
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so by Remark 1.2.1 a(tm+e
p )wn(te−ℓp ν) is in the coset of gm+e,0,∗. So in this case,

g−2j,j,∗ = gm+e,0,∗ thus m = −e and we find that

g ∈ ZNg−e,ℓ,νK
(1)(pn).

Otherwise a(tm+e
p )wn(te−ℓp ν) = gm+e,ℓ−e,ν , therefore g−2j,j,∗ = gm+e,ℓ−e,ν and we get

m+ e = −2(ℓ− e), so

g ∈ ZNg−2ℓ+e,ℓ,νK
(1)(pn).

□

2.1.2. Characters and representations. For χ a character of F×, we denote by

a(χ) the exponent of the conductor of χ, that is the least non-negative integer n such

that χ is trivial on U(n). For π an irreducible admissible representation of G, we also

denote by a(π) the exponent of the conductor of π, that is the least non-negative

integer n such that π has a K(1)(pn)-fixed vector. The central character of π will be

denoted by ωπ.

2.1.3. The local Whittaker newform. Fix π a generic irreducible admissible uni-

tarizable representation of G. From now on, we fix n = a(π), and we shall assume

that π is realized on its Whittaker model.

Definition 1.2.2. The normalized newform Wπ attached to π is the unique

K(1)(pn)-fixed vector such that Wπ(1) = 1.

The normalized conjugate-newform W ∗
π attached to π is the unique K(2)(pn)-fixed

vector such that W ∗
π (1) = 1.
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Remark 1.2.2. By (1.4), the function GL2(F ) → C :

g 7→ Wπ

g
 1

tnp


is K(2)(pn)-invariant. Thus there exists a complex number απ such that

Wπ

·

 1

tnp

 = απW
∗
π .

In addition, we have W ∗
π (g) = ωπ(det(g))Wπ̃(g), where π̃ is the contragradient repre-

sentation to π. Altogether, we get that

Wπ

·

 1

tnp

 = απωπ(det(g))Wπ̃(g).

One can even show that |απ| = 1 (see [Sah16, Lemma 2.17], or [Sah16, Propo-

sition 2.28] for an exact formula in terms of ϵ-factors). Also note the following

identity

(1.6) n(tℓ+mp ν−1)z(tℓ−np ν−1)gm,ℓ,ν

 1

tnp

 = gm+2ℓ−n,n−ℓ,−ν

1
−ν−2

 ,
which, combined with the above, enables one to restrict attention to those cosets

satisfying ℓ ≤ n
2
, at the price of changing π to π̃.

Assing has computed the local Whittaker newforms in great generality, and

estimated them using the p-adic stationary phase method [Ass19b,Ass19a]. Let us

briefly explain the basic ideas of his method. For any fixed m ∈ Z and 0 ≤ ℓ ≤ n the



2. LOCAL BOUNDS 25

function on o× given by ν 7→ Wπ(gm,ℓ,ν) only depends on ν mod (1 + pℓ). Thus, by

Fourier inversion, there exist complex numbers cm,ℓ(µ) such that

Wπ(gm,ℓ,ν) =
∑

µ∈X̃(ℓ)

cm,ℓ(µ)µ(ν),

where X̃(ℓ) is the set of characters µ satisfying µ(tp) = 1 and a(µ) ≤ ℓ.

Then, one may reformulate the Jacquet-Langlands local functional equation as

an equality of power series in the variable qs whose coefficients involve on one side

the Fourier coefficients cm,ℓ(µ) one is interested in, and on the other side Gauss

sums and values of the local newform at some diagonal matrices, both of which are

known [Sch02]. This is the content of [Sah16, Proposition 2.23]. By identifying the

coefficients of the power series appearing in both side, one is then able to compute

inductively the coefficients cm,ℓ(µ), and, from there, the values of the local newform

on each double coset.

This can be done for each local representation π, however Lemma 1.2.2 below

(same as [Sah16, Lemma 2.36]) will enable us to restrict ourselves to principal series

representations. By Remark 1.2.2, we can further restrict ourselves to the situation

ℓ ≤ n
2
. Finally, as we mentioned earlier, in our global application we shall use Saha’s

strong L2-bound [Sah17], so what we are really interested in this section is only the

support of the local newforms. Recall that we have fixed n = a(π).

Lemma 1.2.2. Assume a(ωπ) >
a(π)
2
. Then π = χ1 ⊞ χ2, where χ1 and χ2 are

unitary characters with respective exponents of conductors a1 = a(ωπ) and a2 =

n− a(ωπ).
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In the rest of this section, we shall only consider the case a(ωπ) >
a(π)
2
, as the

main point of our global application is to take advantage of primes at which the

central character is highly ramified. Thus for our purpose, we only have to consider

π = χ1 ⊞ χ2 with a2 <
n
2
< a1, where from now on we denote a1 = a(χ1) and

a2 = a(χ2). We first state the case of maximally ramified principal series.

Lemma 1.2.3. Let π be a generic irreducible admissible unitarizable representation

of G with exponent of conductor a(π) = n > 1. Assume a(ωπ) = a(π). Then there

exists ν1 ∈ o× such that for all m ∈ Z and for 0 ≤ ℓ ≤ n
2
, we have

|Wπ(gm,0,ν)| = 1m≥−nq
−m+n

2 ,

|Wπ(g−n−ℓ,ℓ,ν)| =

 q
ℓ
2 if ν ∈ ν1 + pℓ,

0 if ν ̸∈ ν1 + pℓ,

and if 0 < ℓ < n and m+ ℓ ̸= −n then Wπ(gm,ℓ,ν) = 0.

Proof. This follows from Lemma 3.4 and proof of Lemma 5.8 in [Ass19b]. □

In particular, one sees that in this case the local Whittaker newform is essentially

supported on an arithmetic progressions. The case 1 ≤ a2 <
n
2
< a1 is a bit more

complicated, but one may obtain a result similar in flavour. Work of Assing [Ass19a]

gives precise bounds for the local newform, however these local bounds are slightly

weaker than what we need for our global application. Consequently, we only give

here statements regarding the support of the local newform, and we shall rely on

strong bounds for the L2 mass [Sah17].
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Lemma 1.2.4. Let π be a generic irreducible admissible unitarizable representation

of G with exponent of conductor n > 1. Assume n
2
< a(ωπ) < n. Set a1 = a(ωπ) and

a2 = n− a1. Assume moreover F = Qp. There exists ν1 ∈ o× such that if m ∈ Z

and 0 ≤ ℓ ≤ n
2
, then have Wπ(gm,ℓ,ν) = 0 unless one of the following holds:

(1) ℓ < a2 and m = −n,

(2) ℓ = a2 and m ≥ −n,

(3) ℓ > a2, m = −a1 − ℓ and ν ∈ ν1
−1 + tp

ℓ−a2o×

Proof. This follows almost directly from inspection of the cases in Lemma 3.4.12

in [Ass19a]. Since we are taking F = Qp, the quantity κF defined in [Ass19a]

equals one, so the only bothersome case is a2 < ℓ ≤ a1+a2
2

when a2 = 1. By [Ass19a,

Lemma 3.3.9], for a2 < ℓ < a1 we must have m = −a1 − ℓ, so it only remains to see

that the congruence condition also holds. If ℓ ≤ a1
2
, this follows from Case I of the

proof of Lemma [Ass19a, Lemma 3.4.12]. The only remaining case is thus ℓ = 1+a1
2

,

which only occurs for a1 odd, hence a1 ≥ 3, so a1−a2 ≥ 2κF . As seen from Case VI.2

of the proof, this last condition is enough to get the congruence condition. □

2.2. Archimedean case. The local representation at the infinite place is a

generic irreducible admissible unitary representation π of GL2(R). Let ψ be the

additive character of R given by ψ(x) = e2iπx. The lowest weight vector in the

Whittaker model with respect to ψ is given by

(1.7) Wπ(n(x)a(y)) = e2iπxκ(y),
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where κ is determined by the form of the representation π. We shall use that for

y ∈ R×

(1.8) κ(y) ≪ |y|−ϵe(−2π+ϵ)|y|.

uniformly in y. To see this, let us examine the possibilities for π.

2.2.1. Principal series representations. If π = χ1 ⊞ χ2, where χi = sgnmi |.|si with

0 ≤ m2 ≤ m1 ≤ 1 integers and s1+ s2 ∈ iR and s1− s2 ∈ iR∪ (−1, 1) then the lowest

weight vector is given by

κ(y) =

 sgn(y)m1|y|
s1+s2

2 |y| 12K s1−s2
2

(2π|y|) if m1 = m2

|y|
s1+s2

2 |y|
(
K s1−s2−1

2
(2π|y|) + sgn(y)K s1−s2+1

2
(2π|y|)

)
if m1 ̸= m2,

where Kν is the K-Bessel function of index ν. By [HM06, Proposition 7.2], we have

the following estimate.

Lemma 1.2.5. Let σ > 0. For ℜ(ν) ∈ (−σ, σ) we have

Kν(u) ≪ν,ϵ

 u−σ−ϵ if 0 < u ≤ 1 + π
2
|ℑ(ν)|,

u−
1
2 e−u if u > 1 + π

2
|ℑ(ν)|.

In particular, taking σ = 1
2
if m1 = m2 and σ = 1 otherwise, (1.8) follows in this

case.

2.2.2. Discrete series representations. If π is the unique irreducible subrepresenta-

tion of χ1⊞χ2, where χi = sgnmi |.|si with 0 ≤ m2 ≤ m1 ≤ 1 integers and s1+s2 ∈ iR

and s1 − s2 ∈ Z>0, s1 − s2 ≡ m1 −m2 + 1 mod 2, then the lowest weight vector is
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given by

κ(y) = |y|
s1+s2

2 y
s1−s2+1

2 (1 + sgn(y))e−2πy,

and we see that it satisfies again the estimate (1.8).

3. Global computations

3.1. Notations. Let AQ denote the ring of adèles of Q and let ψ be the unique

additive character of AQ that is unramified at each finite place and equals x 7→ e2iπx

at R. For any local object defined in Section 2, we use the subscript p to denote this

object defined over Qp. We also fix in all the sequel

(1.9) Γ∞ = SO2(R).

Let π = ⊗p≤∞πp be a unitary cuspidal automorphic representation of GL2(AQ) with

central character ωπ. Let N =
∏

p p
np be the conductor of π and let C =

∏
p p

cp be

the conductor of ωπ. In particular C | N . Let us introduce some notation to denote

respectively the set of primes for which Lemma 1.2.2 do or do not apply, namely

(1.10) H =
{
p | N : cp >

np
2

}
and L =

{
p | N : cp ≤

np
2

}
.

We also denote by SN the set of prime numbers dividing N , so that

SN = H ∪L.

Then according to Lemma 1.2.2, πp is an irreducible principal series representation

for each prime p ∈ H , and we have corresponding local exponents of conductors

a1(p) = cp and a2(p) = np − cp. Finally, for any set of primes P, define Ψ(P) to be
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the set of positive integers having all their prime divisors among P. We shall use the

following obvious result.

Lemma 1.3.1. Let P be a finite set of primes. Then for all 0 < α ≤ 1
log(2)

we have

∑
s∈Ψ(P)

s−α =
∏
p∈P

1

1− p−α
≤
(

e

α(e− 1)

)#P

.

Proof. Since 2 is the smallest prime we have 1
1−2−α ≤ 1

1−p−α and since the function

R>0 → R, α 7→ α
1−2−α is increasing, for α in the said range we have 1

1−2−α ≤ e
α(e−1)

. □

3.2. The Whittaker expansion. Let ϕ ∈ π be an L2-normalized newform.

Define the global Whittaker newform on GL2(AQ) by

Wϕ(g) =

∫
Q\AQ

ϕ(n(x)g)ψ(−x) dx.

It factors as

Wϕ(g) = cϕ
∏
p≤∞

Wp(gp),

where Wp are as defined in the first two sections, and cϕ is a constant that satisfies

2ξ(2)c2ϕ∥
∏
p≤∞

Wp∥2reg = 1,

with

∥
∏
p≤∞

Wp∥reg = L(π,Ad, 1)
∏
p≤∞

ζp(2)∥Wp∥2
ζp(1)Lp(π,Ad, 1)

,

see [MV10, Lemma 2.2.3]. In turn, we have the Whittaker expansion

(1.11) ϕ(g) =
∑
q∈Q×

Wϕ(a(q)g) = cϕ
∑
q∈Q×

∏
p≤∞

Wp(a(q)gp)
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for any g ∈ GL2(AQ). Our strategy to bound ∥ϕ∥∞ will be to bound for all g

|cϕ|
∑
q∈Q×

∏
p≤∞

|Wp(a(q)gp)| ≥ |ϕ(g)|,

that is, we do not take advantage of the potential oscillations in the Whittaker

expansion. First, we give a bound for the constant cϕ appearing here. By [HL94] we

have

L(π,Ad, 1) ≫ N−ϵ.

For p unramified,

ζp(2)∥Wp∥2
ζp(1)Lp(π,Ad, 1)

= 1.

For p ramified, we have

Lp(π,Ad, 1) ≍ 1 and 1 ≤ ∥Wp∥2 ≤ 2

(see [Sah16, Lemma 2.16]). Consequently, |cϕ| ≪ N ϵ. We shall also use that for any

integer n coprime to N , we have

(1.12)
∏
p∤N

Wp(a(n)) = n− 1
2λπ(n),

where λπ(n) is the n-th coefficient of the finite part of the L-function attached to π.

3.3. Generating domains. Using invariances of automorphic forms, we can

restrict their argument to lie in some convenient set of representatives. We first

describe such generating domains.

Definition 1.3.1. We denote by DN be the set of g ∈ GL2(AQ) such that
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• g∞ = n(x)a(y) for some x ∈ R and y ≥
√
3
2
,

• gp = 1 for all p ∤ N ,

• gp ∈ GL2(Zp) for all p.

Lemma 1.3.2. Let Γ =
∏

p≤∞ Γp be a subgroup of GL2(AQ) such that Γ∞ = SO2(R),

for all finite p the group Γp is an open subgroup of GL2(Zp) whose image by the

determinant map is Z×
p , and Γp = GL2(Zp) for p ∤ N . Then the subset DN of

GL2(AQ) given by Definition 1.3.1 contains representatives of each double coset of

Z(AQ)GL2(Q)\GL2(AQ)/Γ.

Proof. By the strong approximation theorem, any g ∈ GL2(AQ) can be written

as g∞γk with g∞ ∈ GL+
2 (R), γ ∈ GL2(Q), and k ∈ Γ. Multiplying on the left by γ−1

and on the right by k−1, we can first assume that gp = 1 for all finite p. Next, let

z = g∞ · i. Then there is σ ∈ SL2(Z) such that ℑ(σ · z) ≥
√
3
2
. After multiplying on

the left by σ and on the right by
∏

p∤N σ
−1, we can instead assume that gp = 1 for all

p ∤ N , gp ∈ GL2(Zp) for p | N , and ℑ(g∞z) ≥
√
3
2
. Finally, multiplying by an element

of SO2(R), we can assume that g∞ is of the form n(x)a(y) with y ≥
√
3
2
. □

Instead of evaluating our newform ϕ on elements of our generating domain DN ,

we shall rather use it with a certain translate of ϕ, the “balanced newform”.

Lemma 1.3.3. Consider the subgroup K(1) of GL2(AQ) defined by

K(1) = Γ∞
∏
p<∞

K(1)(pnpZp),

where the local subgroups Γ∞ and K(1)(pnpZp) are defined in (1.9) and (1.3) respec-

tively. For each prime p dividing N , let ep be an integer with 0 ≤ ep ≤ np. Let DN be
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the subset of GL2(AQ) given by Definition 1.3.1. Then the set

DN

∏
p|N

a(pep) ⊂ GL2(AQ)

contains representatives of each double coset of Z(AQ)GL2(Q)\GL2(AQ)/K
(1).

Proof. Let

Γp = GL2(Zp) ∩

1 + pnpZp pepZp

pnp−epZp Zp

 ,
and Γ =

∏
p≤∞ Γp. Let g ∈ GL2(AQ). By Lemma 1.3.2 there exists gd ∈ DN such

that we have the following equality of double cosets

Z(A)GL2(Q)g
∏
p

a(p−ep)Γ = Z(A)GL2(Q)gdΓ.

In particular, for each p | N there exists kp ∈ Γp such that

Z(A)GL2(Q)g
∏
p

a(p−ep) = Z(A)GL2(Q)gdkp.

Now if

kp =

1 + apnp bpep

cpnp−ep d

 ,
then

a(p−ep)kpa(p
ep) =

1 + apnp b

cpnp d

 ∈ K(1)(pnpZp).
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Hence writing

Z(A)GL2(Q)g = Z(A)GL2(Q)gd
∏
p|N

kpa(p
ep)

= Z(A)GL2(Q)(gd
∏
p|N

a(pep))
∏
p|N

a(p−ep)kpa(p
ep),

we find that the double coset Z(A)GL2(Q)gK(1) contains the element gd
∏

p|N a(p
ep),

which belongs to DN

∏
p|N a(p

ep). □

By Lemma 1.3.3, we can restrict ourselves to evaluate |ϕ| on DN

∏
p a(p

ep), where

the exponents ep may be conveniently chosen. Of course, this is equivalent to evaluate

its right translate by
∏

p a(p
ep) on DN . Now, by Lemma 1.2.1 of Section 2, we can

describe this generating domain in terms of the explicit representatives corresponding

to each local double coset decomposition.

Lemma 1.3.4. Let DN be the subset of GL2(AQ) given by Definition 1.3.1. Let

g ∈ DN

∏
p|N a(p

ep) ⊂ GL2(AQ). Then g satisfies the following.

• g∞ = n(x)a(y) for some x ∈ R and y ≥
√
3
2
,

• gp = 1 for all p ∤ N ,

• Let p | N . If ℓ(gp) ≤ ep then m(gp) = −ep, and if ℓ(gp) > ep then m(gp) =

−2ℓ(gp) + ep, where we have used notations of Definition 1.2.1.

Proof. This follows immediately from Definition 1.3.1 and Lemma 1.2.1. □

In particular the (optimal) choice ep = ⌊np

2
⌋ for all p | N , together with Re-

mark 1.2.2, motivates the following definition.



3. GLOBAL COMPUTATIONS 35

Definition 1.3.2. Let IN be the set of g ∈ GL2(AQ) such that

• g∞ = n(x)a(y) for some x ∈ R and y ≥
√
3
2
,

• gp = 1 for all p ∤ N ,

• for all p | N we have ℓ(gp) ≤ np

2
and m(gp) ∈

{
−⌊np

2
⌋,−⌈np

2
⌉
}
.

Remark 1.3.1. Note that for p | N we do not require gp ∈ GL2(Zp)a(pep), but

only the stated conditions about ℓ(gp) and m(gp).

Finally, let us state the quantity we shall actually bound.

Lemma 1.3.5. Recall notations from § 3.1. For each S ⊂ SN , define

ϕS(g) = ϕ

g∏
p∈S

 1

pnp

 .

Then

(1.13) ∥ϕ∥∞ = max
S⊂SN

sup
g∈IN

|ϕS(g)|.

Moreover, for each subset S ⊂ SN and for every g ∈ IN we have

(1.14)

|ϕS(g)| ≤ |cϕ|
∑
q∈Q×

∣∣∣∣∣∣
∏
p|N

W S
p (a(q)gm(gp),ℓ(gp),ν(gp))

∏
p∤N

Wp(a(q))W∞(a(q)n(x)a(y)))

∣∣∣∣∣∣ ,
where W S

p = Wp if p ̸∈ S, and W S
p is the normalized local newform attached to the

contragradient π̃p if p ∈ S.
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Proof. For each p | N , set ep = ⌊np

2
⌋. For convenience, also set e′p = ⌈np

2
⌉. Then

by Lemma 1.3.3, we have

∥ϕ∥∞ = sup
g∈DN

∏
p|N a(pep )

|ϕ(g)|.

We now prove that

(1.15) sup
g∈DN

∏
p|N a(pep )

|ϕ(g)| ≤ max
S

sup
g∈IN

|ϕS(g)|.

By Lemma 1.3.4 we have

(1.16) sup
g∈DN

∏
p|N a(pep )

|ϕ(g)| ≤ sup
x∈R,y≥

√
3
2

m(gp)=−ep if ℓ(gp)≤
np
2

m(gp)=−2ℓ(gp)+ep otherwise

∣∣∣∣∣∣ϕ
n(x)a(y)∏

p|N

gp

∣∣∣∣∣∣ .

By (1.6) we have

g−2ℓp+ep,ℓp,νp

1
−ν−2

p

 = n(−pep−ℓpν−1)z(−p−ℓpν−1)g−e′p,np−ℓp,−νp

 1

pnp

 .
Using this identity at each prime belonging to the set S of primes p satisfying

ℓ(gp) >
np

2
in the right hand side of (1.16) we obtain by right-K(1) invariance of ϕ

(1.17) sup
x∈R,y≥

√
3
2

m(gp)=−ep if ℓ(gp)≤
np
2

m(gp)=−2ℓ(gp)+ep otherwise

∣∣∣∣∣∣ϕ
n(x)a(y)∏

p|N

gp

∣∣∣∣∣∣ ≤M(ϕ)
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where we have set

M(ϕ) = max
S⊂SN

sup
x∈R,y≥

√
3
2

m(gp)=−ep if p∈S
m(gp)=−e′p otherwise

ℓ(gp)≤
np
2

∣∣∣∣∣∣ϕS
n(x)a(y)∏

p|N

gp

∣∣∣∣∣∣ .

Combining (1.16), (1.17) and the definition of IN , we obtain the bound (1.15). From

definition, it is clear that

∥ϕ∥∞ ≥ max
S⊂SN

sup
g∈IN

|ϕS(g)|

so (1.13) follows.

The second claim follows from the Whittaker expansion (1.11). Observe that by

Remark 1.2.2, ∣∣∣∣∣∣Wp

gp
 1

pnp

∣∣∣∣∣∣ = |W̃p(gp)|,

where W̃p is the normalized local newform attached to the contragradient π̃p. The

identity

a(q)n(x) = n(qx)a(q)

and the left invariance of the modulus of the local Whittaker newforms by NZ

give (1.14). □

As we shall be interested in the support of the Whittaker expansion, we make now

the following definition.
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Definition 1.3.3. Keep notation as in Lemma 1.3.5. For every S ⊂ SN and

g ∈ IN we define Supp(g;S) as the set of rational numbers q ∈ Q× such that

∏
p|N

W S
p (a(q)gm(gp),ℓ(gp),ν(gp))

∏
p∤N

Wp(a(q))W∞(a(q)n(x)a(y)) ̸= 0.

Notation 1.3.1. From now on we fix g ∈ IN and S ⊂ SN (in the notation of

§ 3.1 and Definition 1.3.2), and we define for each p | N , ℓp = ℓ(gp), ϵp = −m(gp),

ϵ′p = np − ϵp, and νp = ν(gp). We then define the following integers

L =
∏

p|N p
ℓp , N1 =

∏
p p

ϵp , N2 =
∏

p p
ϵ′p ,

as well as the sets of primes

H− = {p ∈ H : ℓp < a2(p)},

H= = {p ∈ H : ℓp = a2(p)},

H+ = {p ∈ H : ℓp > a2(p)},

(1.18)

where a2(p) = np− cp is the exponent of the conductor of the local character χ2 (note

that in the case where N = C, we have H− = ∅ and H= coincides with the set of

primes dividing N and not dividing L). If M =
∏

p p
mp is any integer, we may use

the notation

M⋆ =
∏
p∈H⋆

pmp

for ⋆ ∈ {+,−,=}.
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3.4. Sup norms: maximally ramified case. In this subsection, we are assum-

ing N = C and we prove Theorem 1.1.1 in this special case, as the proof becomes

simpler. We first determine the support of the “Whittaker expansion” (1.14).

Lemma 1.3.6. Recall Notation 1.3.1. There is a map

Ψ(H=) → {1, · · · , L}

s 7→ ts

such that

Supp(g;S) ⊆
{

s

N2L
(ts + jL) : s ∈ Ψ(H=), j ∈ Z with ts + jL coprime to N

}
.

Proof. Let q =
∏

p p
qp ∈ Q×. Assume q ∈ Supp(g;S). First, if p ∤ N then we

must have qp ≥ 0. So sgn(q)
∏

p∤N p
qp is an integer. We shall see that it satisfies a

certain congruence condition. Consider now a prime p | N , if q = pqpu ∈ Q× with

u ∈ Z×
p , we have

(1.19) a(q)g−ϵp,ℓp,νp = gqp−ϵp,ℓp,νpu−1

1
u

 = gqp−ϵp,ℓp,νppqpq−1

1
qp−qp

 .
By Lemma 1.2.3 (applied either to πp if p ̸∈ S or to π̃p if p ∈ S), if ℓp = 0 then

qp − ϵp ≥ −np, so qp ≥ −ϵ′p. It follows that

s
.
=
∏
p|N
p∤L

pqp+ϵ
′
p ∈ Ψ(H=).
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On the other hand, if ℓp > 0 then qp − ϵp = −np − ℓp, so qp = −ϵ′p − ℓp. Now fix a

prime p0 | L (so ℓp0 > 0), and write

sgn(q)s
∏
p∤N

pqp = sgn(q)
∏
p∤N

pqp
∏
p|N
p∤L

pqp+ϵ
′
p

= sgn(q)
∏
p∤N

pqp
∏
p|N
p∤L

pqp+ϵ
′
p

∏
p|L
p ̸=p0

pqp+ϵ
′
p+ℓp

= sgn(q)
∏
p̸=p0

pqp
∏
p|N
p∤L

pϵ
′
p

∏
p|L
p̸=p0

pϵ
′
p+ℓp

=
(
p
−qp0
0 q

)∏
p|N
p∤L

pϵ
′
p

∏
p|L
p ̸=p0

pϵ
′
p+ℓp

 .

By Lemma 1.2.3 and equality (1.19), p
−qp0
0 q satisfies a certain congruence condition

modulo pℓp0Zp0 . In addition
∏

p|N
p∤L

pϵ
′
p
∏

p|L
p ̸=p0

pϵ
′
p+ℓp is clearly in Z×

p0
. So we just showed

that the integer sgn(q)s
∏

p∤N p
qp satisfies a certain congruence condition modulo p

ℓp0
0 .

Applying the same reasoning with each prime dividing L, we obtain by the Chinese

remainder theorem a condition of the type

sgn(q)s
∏
p∤N

pqp ≡ r0 mod L.

Since in addition L and s are coprime, we can write

(1.20) sgn(q)
∏
p∤N

pqp = ts + jL
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for some integer ts ≡ r0s
−1 mod L, and j ranging over Z. Finally,

q = sgn(q)
∏
p|L

p−ϵ
′
p−ℓp

∏
p|N
p∤L

pqp
∏
p∤N

pqp =
s

N2L
(ts + jL).

□

We now compute the size of each term in “the Whittaker expansion” (1.14).

Lemma 1.3.7. Keep notations from Notation 1.3.1 and Lemma 1.3.5. Let q =

s
N2L

(ts + jL) as in Lemma 1.3.6. Then we have∣∣∣∣∣∣
∏
p|N

W S
p (a(q)g−ϵp,ℓp,νp)

∏
p∤N

Wp(a(q))

∣∣∣∣∣∣ = L
1
2 s−

1
2 |ts + jL|−

1
2 |λπ(|ts + jL|)| .

Proof. For q of this form, using (1.20) and (1.12), we have

∏
p∤N

Wp(a(q)) =
∏
p∤N

Wp(ts + jL)

= (|ts + jL|)−
1
2λπ(|ts + jL|),

and Lemma 1.2.3 (observe that the contragradient representation π̃p satisfies the

same hypothesis as πp) together with equality (1.19) give∣∣∣∣∣∣
∏
p|N

W S
p (a(q)g−ϵp,ℓp,νp)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∏
p|N

W S
p (gqp−ϵp,ℓp,νppqpq−1)

∣∣∣∣∣∣
= L

1
2

∏
ℓp=0

p−
qp−ϵp+np

2 = L
1
2 s−

1
2 .
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□

By Combining Lemmas 1.3.6 and 1.3.7 the “Whittaker expansion” (1.14) is thus

bounded above by

cϕL
1
2

∑
s∈Ψ(H=)

s−
1
2

∑
j∈Z

|ts + jL|−
1
2
+δ+ϵκ

(
ts + jL

N2L
sy

)
.

Using estimate (1.8), we first evaluate the j-sum as follows:

∑
j∈Z

|ts + jL|−
1
2
+δ+ϵκ

(
ts + jL

N2L
sy

)

≪
(
sy

N2L

)−ϵ∑
j∈Z

|ts + jL|−
1
2
+δ+ϵ exp

(
(−2π + ϵ)

|ts + jL|
N2L

sy

)

≪
(
sy

N2L

)−ϵ(
1 +

∫
R
|tL|−

1
2
+δ+ϵ exp

(
(−2π + ϵ)

|t|
N2

sy

)
dt

)

≪
(
N2L

sy

)2ϵ
(
1 +

(
N2

Lsy

) 1
2
(
N2L

sy

)δ)
.

Altogether, using Lemma 1.3.1 and the fact that Aω(N) ≪ϵ N
ϵ for any fixed A > 0

we get

|ϕ(g)| ≪ cϕ

(
N2L

y

)ϵ(
L

1
2 + Lδ

(
N2

y

) 1
2
+δ
)

≪ N2ϵ
(
L

1
2 +N

1
2
2 N

δ
)

since cϕ ≪ N ϵ, y ≥
√
3
2

and N2L ≤ N . This establishes Theorem 1.1.1 when N = C

because we have L ≤ N
1
2 and N2 ≤

∏
p|N p

⌈np
2
⌉.

3.5. Sup norms: general ramification. Finally, let us address the necessary

modifications when we do not make any assumption about the conductor of χ. The
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analysis of the local Whittaker newformWp is similar, but with more cases to take into

account, depending on which of the sets (1.10) the prime p belongs. In particular, it

still holds that for all p ∈ H we have πp = χ1⊞χ2, but the exponents a2(p) = np− cp

of the conductor of the local characters χ2 may not all equal zero. We thus also get a

Whittaker expansion supported on arithmetic progressions dictated by the primes

at which the central character is highly ramified. The rest of our argument differs

from the maximally ramified case, as we rather use strong L2-averages of the local

newforms, in the spirit of [Sah17], instead of the local bounds. Of course, in the

maximally ramified case, these L2-averages follow immediately from the computation

of the support of the local newform Wp and the local bound, so the difference on the

argument is mainly expository.

We first determine the support of the “Whittaker expansion” (1.14) in this more

general case.

Lemma 1.3.8. Recall Notation 1.3.1. There is a map

Ψ(H=)×Ψ(L) →
{
1, · · · , L

+C+

N+

}
(s, u) 7→ tsu

such that

Supp(g;S) ⊆
{
su

N+

N2L+C+

(
tsu + j

L+C+

N+

)
, s ∈ Ψ(H=), u ∈ Ψ(L), j ∈ Z

with tsu + j
L+C+

N+
coprime to N

}
.
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Remark 1.3.2. It is immediate by unravelling the definitions that L+C+

N+ is an

integer.

Proof. The reasoning is quite similar to the proof of Lemma 1.3.6, but we

use [Sah17, Proposition 2.10] for the primes in L and Lemma 1.2.4 instead of

Lemma 1.2.3 for those primes in H. Fix q =
∏

p p
qp ∈ Supp(g;S). As before,

sgn(q)
∏

p∤N p
qp is an integer and we shall see it satisfies some congruence condition. If

p ∈ H= or p ∈ L then examination of either Lemma 1.2.4 or [Sah17, Proposition 2.10]

gives qp ≥ −ϵ′p. So

su
.
=

∏
p∈L∪H=

pqp+ϵ
′
p ∈ Ψ(L ∪H=).

In addition Lemma 1.2.4 gives that for p ∈ H− we have qp = −ϵ′p, and for p ∈ H+

we have qp = ϵp − ℓp − a1(p). Fix p0 ∈ H+ and write

sgn(q)su
∏
p∤N

pqp = sgn(q)
∏
p∤N

pqp
∏

p∈L∪H=

pqp+ϵ
′
p

= sgn(q)
∏
p∤N

pqp
∏

p∈L∪H=

pqp+ϵ
′
p

∏
p∈H−

pqp+ϵ
′
p

∏
p∈H+
p ̸=p0

pqp−(ϵp−ℓp−a1(p))

= sgn(q)
∏
p ̸=p0

pqp
∏

p∈L∪H=∪H−

pϵ
′
p

∏
p∈H+
p ̸=p0

pℓp+a1(p)−ϵp .

By Lemma 1.2.4 the rational number sgn(q)
∏

p ̸=p0 p
qp satisfies a congruence condi-

tion modulo pℓp0−a2(p0)Zp0 . Then using the Chinese remainder theorem we see that

sgn(q)su
∏

p∤N p
qp is an integer satisfying a congruence condition modulo L+C+

N+ . It
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follows that we can write

sgn(q)
∏
p∤N

pqp = tsu + j
L+C+

N+
.

Finally,

q = sgn(q)
∏
p∤N

pqp
∏

p∈L∪H=

pqp
∏
p∈H−

p−ϵ
′
p

∏
p∈H+

pϵp−ℓp−a1(p)

=

(
tsu + j

L+C+

N+

)
su∏

p∈L p
ϵ′pN=

2

1

N−
2

N+
1

L+C+
.

□

If we were now to proceed following the exact same strategy as in the maximally

ramified case, then we would get a worse estimate because of weaker local bounds for

the local newform in the case ℓp =
np

2
(see [Ass19b, Lemma 5.10]). Instead, we rely

on L2-averages of the local newvectors established by Saha [Sah17]. To this end, we

make first the following trivial lemma.

Lemma 1.3.9. Suppose (an)n∈Z, (bn)n∈Z are two families of positive real numbers

such that
∑

n∈Z anbn converges absolutely1, and an is periodic with period T . Let M

be such that
T−1∑
n=0

a2n ≤M.

Then we have ∑
n∈Z

anbn ≤M
1
2

∑
k∈Z

(
T−1∑
j=0

b2Tk+j

) 1
2

.

1meaning the partial sums
∑

n∈J |anbn| indexed by finite sets J ⊂ Z are uniformly bounded.



46 CHAPTER 1. SUP NORMS

Proof. We regroup the series in sums of length T and we apply Cauchy-Schwarz

for each of these. □

Next, we express the “Whittaker expansion” (1.14) so as to be tackled by previous

lemma.

Lemma 1.3.10. Recall Notation 1.3.1. Then

|ϕS(g)| ≤ |cϕ|
∑

s∈Ψ(H=)

∑
u∈Ψ(L)

∑
n∈Z

anbn,

where an is periodic with period L and satisfies

(1.21)
L−1∑
n=0

a2n ≪ N ϵL(su)−
1
2

and

bn = |n|−
1
2

∣∣∣∣λπ (n)κ(N+suny

N2L+C+

)∣∣∣∣1n≡tsu mod L+C+

N+
.

Proof. The claim will follow from the “Whittaker expansion” (1.14)

|ϕS(g)| ≤ |cϕ|
∑
q∈Q×

∣∣∣∣∣∣
∏
p|N

W S
p (gqp−ϵp,ℓp,νppqpq−1)

∏
p∤N

Wp(a(q))W∞(a(q)n(x)a(y)))

∣∣∣∣∣∣ ,
together with (1.7), (1.12) and Lemma 1.3.8 once we have shown that the sequence

defined by

an =

∣∣∣∣∣∣
∏
p|N

W S
p

(
a

(
N+sun

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣∣∣
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satisfies the desired properties. For each p | N , let us distinguish cases depending on

which of the sets defined in (1.10) and (1.18) contains p. For all v ∈ Z×
p we have

W S
p

(
a

(
N+suv

N2L+C+

)
g−ϵp,ℓp,νp

)
=



W S
p

(
a (v) gup−np,ℓp,∗

)
if p ∈ L

W S
p

(
a (v) g−np,ℓp,∗

)
if p ∈ H−

W S
p

(
a (v) gsp−np,ℓp,∗

)
if p ∈ H=

W S
p

(
a (v) g−ℓp−a1(p),ℓp,∗

)
if p ∈ H+,

where each ∗ is independent of v. By [Sah17, Proposition 2.10], we then get

∫
v∈Z×

p

∣∣∣∣W S
p

(
a

(
N+suv

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣2 d×v ≪



p−
up
2 if p ∈ L

1 if p ∈ H−

p−
sp
2 if p ∈ H=

1 if p ∈ H+.

Now by [Sah17, Remark 2.12], for each p | N and each fixed s ∈ Ψ(H=) and

u ∈ Ψ(L), the map on Z×
p given by

v 7→
∣∣∣∣W S

p

(
a

(
N+suv

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣
is Up(ℓp)-invariant. Hence by the Chinese remainder theorem, these give rise to a

map on (Z/LZ)× given by

(r mod L) 7→
∏
p|N

∣∣∣∣W S
p

(
a

(
N+sur

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣ ,
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and by Lemma 1.3.8, if an ̸= 0 then n is coprime to N , thus the sum (1.21) is just

∑
r∈(Z/LZ)×

∏
p|N

∣∣∣∣W S
p

(
a

(
N+sur

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣2

= φ(L)
∏
p|N

∫
v∈Z×

p

∣∣∣∣W S
p

(
a

(
N+suv

N2L+C+

)
g−ϵp,ℓp,νp

)∣∣∣∣2 d×v
≪ N ϵL(su)−

1
2 ,

where φ is Euler’s totient. □

By combining Lemmas 1.3.9 and 1.3.10 it follows

(1.22) |ϕ(g)| ≪ N ϵL
1
2

∑
s∈Ψ(H=)

s−
1
4

∑
u∈Ψ(L)

u−
1
4

∑
k∈Z

S
1
2
k ,

where

(1.23) Sk =
L−1∑
j=0

b2Lk+j,

and bn is defined in Lemma 1.3.10.

Lemma 1.3.11. For all k ≥ 1 the sum (1.23) satisfies

Sk ≪
N+

L+C+
L2δ

(
N

suy

)ϵ
k−1+2δ+ϵ exp

(
−πN

+suyL

N2L+C+
k

)
,

and the same estimate holds for k ≤ −2 upon replacing k with −k − 1 in the right

hand side. Finally,

S0, S−1 ≪
(
N2

suy

)ϵ(
1 +

N+

L+C+

(
N2L

+C+

N+suy

)2δ+ϵ
)
.
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Proof. For those intervals [kL, (k+1)L] not containing zero we use estimate (1.8)

then we bound Sk by the number of terms multiplied by the largest term. Since L+C+

N+

divides L, the congruence condition on n = Lk + j modulo L+C+

N+ is equivalent to the

same congruence condition on j. We thus get, for k ≥ 1

Sk ≪
N+

L+C+
L2δ

(
N

suy

)ϵ
k−1+2δ+ϵ exp

(
−πN

+suyL

N2L+C+
k

)
.

For k = 0 we have

S0 ≪
(
N

suy

)ϵ (
1+

∫ ∞

0

(
tsu + t

L+C+

N+

)−1+2δ+ϵ

× exp

(
−π N+suy

N2L+C+

(
tsu + t

L+C+

N+

))
dt
)

≪
(
N

suy

)ϵ (
1+

N+

L+C+

(
N2L

+C+

N+suy

)2δ+2ϵ)
.

The analogous results for k < 0 follow by changing k to −k − 1 and changing ts,u to

L+C+

N+ − ts,u. □

By a similar argument as in § 3.4, Lemma 1.3.11 implies

∑
k∈Z

S
1
2
k ≪

(
N

suy

)ϵ(
1 +

(
N+

L+C+

) 1
2
(
N2L

+C+

N+suy

)δ+ϵ
+

(
N2

Lsuy

) 1
2
(
N2L

+C+

N+suy

)δ+ϵ)
.

Substituting this into (1.22) and using Lemma 1.3.1 we obtain

|ϕ(g)| ≪ N δ+ϵ
(
L

1
2 +N

1
2
2

)
.

Lemma 1.3.5 together with the results from Section 3.4 and 3.5 finishes the proof of

Theorem 1.1.1.
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CHAPTER 2

A relative trace formula approach to the Kuznetsov formula

for GSp4

1. Introduction

In this chapter we develop a Kuznetsov formula for the group GSp4. To motivate

our results, we first recall the Kuznetsov formula for GL2, an identity relating spectral

information about the quotient space Γ\H (where Γ is a congruence subgroup) to

some arithmetic input.

For arbitrarily chosen nonzero integers n and m and any reasonable test function h,

the spectral side involves the quantity

(2.1) h(tu)am(u)an(u),

where u ranges over eigenfunctions of the Laplace operator involved in the spectral

decomposition of L2(Γ\H), am(u) is the m-th Fourier coefficient of u, and tu is the

corresponding spectral parameter. More precisely, the spectrum of L2(Γ\H) can be

described as the direct sum of the discrete spectrum and the continuous spectrum. The

discrete spectrum is the direct sum of 1-dimensional subspaces spanned by cuspidal

Maaß forms (the cuspidal spectrum) plus the constant function (the residual spectrum).

The continuous spectrum is a direct integral of 1-dimensional subspaces spanned by

51
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the Eisenstein series. The spectral side of the Kuznetsov formula correspondingly

splits as a discrete sum over Maaß forms plus a continuous integral over Eisenstein

series.

The arithmetic-geometric side is a sum of two contributions, that may be seen

as the contributions from the two elements of the Weyl group of GL2. The identity

contribution is given by the delta symbol δn,m times the integral of the spectral test

function h against the spectral measure t
π2 tanh(πt)dt. For this reason, the Kuznetsov

formula may be viewed as a result of quasi-orthogonality for the Fourier coefficients

am(·) and an(·), provided the remaining contribution can be controlled. The latter

consists of a sum of Kloosterman sums weighted by some integral transform of the

test function h, involving Bessel functions.

Applications of the Kuznetsov formula involve using known results about any of

the two sides to derive information about the other side. On one hand, the flexibility

allowed by the choice of the test function h enables one to use known bounds about

the Kloosterman sums to study the distribution of the discrete spectrum and the

size of the Fourier coefficients of Maaß forms. On the other hand, understanding the

Fourier coefficients of Maaß forms as well as the integral transform appearing on the

geometric side yields strong bounds for sums of Kloosterman sums.

Recently, Kuznetsov formulae have been developed by Blomer and Buttcane for

GL3 (see [Blo13,But13,But16,But19,But20b,But21,But22,BB19,BBM17]),

with similar applications as described above. It would thus be interesting to establish

the corresponding formulae for other groups.
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In the classical proof of the GL2 Kuznetsov formula, one computes the inner

product of two Poincaré series in two different ways, one involving the spectral

decomposition of L2(Γ\H), and the other one by computing the Fourier coefficients

of the Poincaré series and unfolding. This gives a “pre-Kuznetsov formula”, that one

then proceeds to integrate against the test function h, obtaining on the geometric

side the integral transforms of h mentioned above.

Another approach, that one may call the relative trace formula approach to the

Kuznetsov formula, builds upon the relative trace formula that was introduced by

Jacquet [JL85]. In the case of GL2, the relative trace formula approach to the

Kuznetsov formula is apparently based on unpublished work of Zagier, detailed

in [Joy90]. This approach is developed in the adelic framework in [KL13] for the

congruence subgroup Γ = Γ1(N). It proceeds by integrating an automorphic kernel

Kf (x, y) =
∑

γ∈PGL2(Q)

f(x−1γy),

where x, y ∈ GL2(A) and f : GL2(A) → C is a suitable test function. The spectral

expansion of the kernel will then involve the quantity f̃(tu)u(x)u(y), where u ranges

over the eigenfunctions involved in the spectral decomposition of L2(Γ(N)\H), tu is

the spectral parameter of u, and f̃ is the spherical transform of f . Thus integrating

Kf(x, y) against a suitable character on U × U , where U = [ 1 ∗
1 ], one gets the

quantity (2.1) with h = f̃ . On the other hand, using the Bruhat decomposition for

PGL2(Q), one can decompose the integral over U × U as a sum over elements of

the Weyl group and over diagonal matrices in PGL2(Q) of some orbital integrals. In

the case of the identity element, at most one diagonal matrix will have a non-zero



54 CHAPTER 2. KUZNETSOV FORMULA

contribution, which will turn out to be a delta symbol times some integral transform

of the function f . In the case of the longest element in the Weyl group, each positive

integer in NZ will have a nonzero contribution, given by a Kloosterman sum times

a second kind of integral transform of f . A more refined version is then obtained

by taking the Mellin transform of the primitive formula obtained. Note that in this

approach, one gets on the geometric side some integral transforms of the function

f , hence one has to do some extra work to relate these to the test function h = f̃

appearing in the spectral side.

A couple of remarks are in order about the choice of f . Firstly, the spectral expan-

sion of the kernel involves the spectral decomposition of L2(R>0GL2(Q)\GL2(A))

rather than L2(Γ\H). By restricting f to be left and right K∞-invariant (where

K∞ = SO2), only right-K∞-invariant automorphic forms ϕ (thus corresponding to

adelization of functions on the homogeneous space H = SL2(R)/K∞) will show up in

the spectral expansion of the kernel, but other choices are possible. Also one may

choose the test function f at unramified places so as to get a final formula that include

the Hecke eigenvalues of a fixed Hecke operator of index coprime to the level N .

Our plan is to implement the relative trace formula approach in the case of GSp4.

In contrast to the case of GL2, there is more than one non-conjugate unipotent

subgroups U . Choosing U to be the unipotent radical of the Borel subgroup (that is

the minimal parabolic subgroup) will yield Whittaker coefficients of the automorphic

forms involved (instead of the Fourier coefficients). The Whittaker coefficients have a

“multiplicity one” property, which ensures that the global Whittaker coefficients factor

into a product of local coefficients. These local Whittaker coefficients can be written
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down in terms of local Satake parameters, which is important for applications. Also

in contrast to the case of GL2, not every automorphic form has non-identically zero

Whittaker coefficients. For instance, Siegel modular forms give rise to automorphic

forms whose Whittaker coefficients vanish identically. Thus, only generic automorphic

forms (i.e, with non-identically zero Whittaker coefficients) will survive the integration

on U × U and contribute to the final formula.

In Section 2 below we introduce the group GSp4 and the structure theory that

shall be needed. In Section 3, we introduce the basic representation-theoretic notions

and tools: in subsection 3.1 we introduce the Whittaker coefficients of automorphic

forms, that is the basic object which will appear in our relative trace formula. In

subsection 3.2 we introduce the automorphic kernel associated to a test function

f , on which the relative trace formula approach is based. This kernel induces a

certain global operator R(f), that factors as a tensor product of local operators. The

automorphic forms appearing in the spectral side of the relative trace formula range

over an orthonormal basis of eigenfunctions of R(f), plus an analogous continuous

contribution. The construction of this eigenbasis is done by studying the local

operators corresponding to R(f). This is the object of the following next two

subsections, where we discuss these local operators at the finite places and at the

Archimedean place respectively. As we explain there, the former are given by the

Hecke algebra while the latter amounts to the spherical transform. We also include

a discussion of the Whittaker function at the Archimedean place, and an integral

transform related to it, that will eventually appear in the geometric side of the

relative trace formula. In Section 4, we introduce the Eisenstein series involved in

the spectral expansion of the automorphic kernel, and we derive the spectral side



56 CHAPTER 2. KUZNETSOV FORMULA

of the relative trace formula in an explicit fashion. In Section 5, we deal with the

geometric side of the relative trace formula. In the first two subsections we introduce

the relevant orbital integrals and we study them globally. We then switch to a local

analysis. In subsection 5.3 we study the orbital integrals at the Archimedean place.

This involves the integral transform that was mentioned earlier, as well as a certain

interchange of integrals conjecture (that we will not need for our final application in

Chapter 3). The finite part of the orbital integrals – which gives rises to generalised

Kloosterman sums – is studied in subsection 5.4. While until that point we work

with a general congruence subgroup, in subsection 5.4 we fix a choice of congruence

subgroup (the Borel congruence subgroup) in order to write down explicitly the

corresponding Kloosterman sums. Other choices of congruence subgroups would

be possible, but we do not pursue this here. Finally, in Section 6 we assemble the

material from previous sections and we write down the Kuznetsov formula explicitly

(in Theorem 2.6.1) by equating the spectral side of the relative trace formula to the

geometric side.

Let us briefly sketch some similarities and differences with the Kuznetsov formula

for GL3. These groups both have rank 2, but GL3 has root system of type A2 and

GSp4 has root system of type C2. On the spectral side, the continuous contribution is

in both cases given on the one hand by minimal Eisenstein series, (that is, attached to

the minimal parabolic subgroup), and on the other hand by Eisenstein series induced

from non-minimal parabolic subgroups by Maaß forms on GL2. However, in the case

of GL3, the two non-minimal proper standard parabolic subgroup are associated,

hence by Langlands theory their Eisenstein series are essentially the same. On the

other hand, for GSp4, we have two distinct non-associated such parabolic subgroups,
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giving rise to two distinct kinds of Eisenstein series. As for as the geometric side,

the Weyl group of GL3 has six elements, while the Weyl group of GSp4 has eight.

However, it seems interesting to notice that in both case, only the identity element

and the longest three elements in the Weyl group have a non-zero contribution, thus

eventually giving in total four distinct terms.

Finally, let us mention that Siu Hang Man has independently derived a Kuznetsov

formula for Sp4 using the more classical technique of computing the inner product of

Poincaré series, and has derived some applications towards the Ramanujan Conjec-

ture [SHM21]. However, because the techniques employed and the final formulae

differ, the author believes that our works are complementary rather than redundant.

Indeed, the flexibility offered by the adelic framework enables us to treat the test

function differently at each place. As a result, by choosing an appropriate test

function at finite places, our formula might incorporate the eigenvalues of an arbitrary

Hecke operator. Furthermore, at the Archimedean place, we make use of two deep

theorems of functional analysis on real reductive groups (namely Harish-Chandra

inversion theorem and Wallach’s Whittaker inversion theorem) in order to produce

an arbitrary Paley-Wiener test function on the spectral side, and relate it explicitly

to its transform appearing on the arithmetic side. As a last point, working with GSp4

instead of Sp4 enables us to work with a central character.
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2. Generalities

Definition 2.2.1. The general symplectic group of degree 2 over a field F is the

group

GSp4(F) = {g ∈ Mat4(F) : ∃µ ∈ F×, ⊤gJg = µJ},

where J =
[

I2
− I2

]
and ⊤g denotes the transpose matrix of g.

Note that some authors use different realizations of GSp4, for instance the realiza-

tion used in [RS07] (to which we refer, along with [RS16], for expository details)

is conjugated in GL4 to ours by the matrix

[
1

1
1
1

]
. From now on we denote

G = GSp4. The scalar µ = µ(g) in the definition is called the multiplier system.

The Cartan involution of G is given by θ(g) = ⊤g−1 = µ(g)−1JgJ−1. The centre of

G consists of all the invertible scalar matrices. We fix a maximal torus in G(F)

T (F) =
{[ x

y
tx−1

ty−1

]
: x, y, t ∈ F×

}
.

Definition 2.2.2. The symplectic group of degree 2 over a field F is the group

Sp4(F) = {g ∈ G(F) : µ(g) = 1}.

The centre of Sp4 is {±1}, and a maximal torus in Sp4(F) is given by

A(F) = T (F) ∩ Sp4(F) =
{[ x

y
x−1

y−1

]
: x, y ∈ F×

}
.

We denote by a the Lie algebra of A(R).
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2.1. Weyl group. Let N(T ) be the normalizer of T . The Weyl group Ω =

N(T )/T is generated by (the images of) s1 =

[
1

1
1

1

]
and s2 =

[
1

1
−1

1

]
, and

consists of the (images of the) eight elements

1, s1, s2, s1s2 =

[
1
1
1

−1

]
, s2s1 =

[
1

1
−1

1

]
,

s1s2s1 =

[
1

1
1

−1

]
, s2s1s2 =

[
1

1
−1

−1

]
, (s1s2)

2 = J.

2.2. Compact subgroups. A choice of maximal compact subgroup of G(R) is

given by the set K0 of fixed points of the Cartan involution θ. An easy computation

shows

K0 = K∞ ⊔
[

1
1

−1
−1

]
K∞,

where

K∞ =
{[

A B
−B A

]
: A⊤A+B⊤B = I2, A

⊤B = B⊤A
}
.

The condition 
A⊤A+B⊤B = I2

A⊤B = B⊤A

is equivalent to A+ iB ∈ U(2), hence K∞ is isomorphic to U(2).

For each prime p we also consider a (compact open) congruence subgroup Γp ⊂

G(Zp), with the properties that Γp = G(Zp) for all but finitely many p and the

multiplier system µ is surjective from Γp to Z×
p for all p. This implies we have the

strong approximation: setting Γ = K∞
∏

p Γp, we have

G(A) = G(R)◦G(Q)Γ,
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where G(R)◦ is the connected component of the identity and A is the ring of adèles

of Q. Moreover we have the Iwasawa decomposition G(A) = P (A)K for all

standard parabolic subgroups P , where K = K∞
∏

pG(Zp).

2.3. Parabolic subgroups. Parabolic subgroups are subgroups such that G/P

is a projective variety. Given a minimal parabolic subgroup P0, standard parabolic

subgroups (with respect to P0) are those parabolic subgroups that contain P0. If

P is a standard parabolic subgroup defined over Q, the Levi decomposition of

P is a semidirect product P = NPMP where MP is a reductive subgroup and NP

is a normal unipotent subgroup. We give here the three non-trivial standard (with

respect to our choice of P0 = B) parabolic subgroups and their Levi decompositions.

2.3.1. Borel subgroup. The Borel subgroup is the minimal standard parabolic

subgroup. It is given by

B =
[ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

]
∩GSp4

and has Levi decomposition B = UT = TU , where

U = {u(x, a, b, c) : a, b, c, x ∈ F} ,

where

u(x, a, b, c) =

[
1 c a−cx
x 1 a b

1 −x
1

]
=

[
1
x 1

1 −x
1

] [
1 c a−cx
x 1 a−cx b−x(a−cx)

1 −x
1

]
.

We have the Bruhat decomposition

G =
∐
σ∈Ω

BσB =
∐
σ∈Ω

UTσU.
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For each element σ of the Weyl group, define Uσ = U ∩σUσ−1, and Uσ = U ∩σ⊤Uσ−1.

Then we have U = UσUσ = UσUσ and Uσ ∩Uσ = {1}, and the Bruhat decomposition

can be written

G =
∐
σ∈Ω

UσTσU =
∐
σ∈Ω

UTσUσ−1 .

We write the Iwasawa decomposition for Sp4(R) as follows.

Definition 2.2.3. For every g ∈ Sp4(R) there is a unique element A(g) ∈ a, such

that

g ∈ U exp(A(g))K∞.

2.3.2. Klingen subgroup. The Klingen subgroup is

PK =
[ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

]
∩GSp4 .

It has Levi decomposition PK = NKMK, where

NK = Us2 =

{[
1
x 1

y
y z
1 −x

1

]
, x, y, z ∈ F

}
and

MK =

{[
a b
t

c d
t−1δ

]
, t ∈ F×, δ = det ([ a bc d ]) ̸= 0

}
.

We have MK ≃ GL2×GL1, and if m =

[
a b
t

c d
t−1δ

]
∈ MK and n ∈ NK we define

ProjGL2
PK

(nm) = ProjGL2
PK

(mn) = [ a bc d ]

ProjGL1
PK

(nm) = ProjGL1
PK

(mn) = t.

The centre of MK is AK =

{[
u
t
u
t−1u2

]
, t, u ∈ F×

}
.
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2.3.3. Siegel subgroup. The Siegel subgroup is

PS =
[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

]
∩GSp4 .

It has Levi decomposition PS = NSMS, where

NS = Us1 =

{[
1
1
x y
y z
1
1

]
, x, y, z ∈ F

}
and

MS =
{[

A
t⊤A−1

]
, A ∈ GL2(F), t ∈ F×} .

We have MS ≃ GL2×GL1, and if m =
[
A
t⊤A−1

]
∈ MK and n ∈ NK we define

ProjGL2
PS

(nm) = ProjGL2
PS

(mn) = A

ProjGL1
PS

(nm) = ProjGL1
PS

(mn) = µ(m) = t.

The centre of MS is AS =

{[ u
u
tu−1

tu−1

]
, t, u ∈ F×

}
.

2.4. Lie algebras and characters. Following Arthur [Art05], we parametrize

the characters of the Levi components of the parabolic subgroups by the duals of the

Lie algebras of their centres. We fix | · |A =
∏

v | · |v the standard adelic absolute

value. Let P =MPNP be a standard parabolic subgroup, and AP be the centre of

MP . Then there is a surjective homomorphism

HP :MP (A) → HomZ(X(MP ),R)

defined by

(2.2) (HP (m)) (χ) = log(|χ(m)|A),
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where we write X(H) for the group of homomorphisms (of algebraic groups) H → GL1

that are defined over Q. On the other hand, we may identify the vector space

HomZ(X(MP ),R) with the Lie algebra aP ⊕ z of AP (R) (where aP is the Lie algebra

of AP (R)∩Sp4(R) and z is the Lie algebra of the centre). Denote by a∗P the dual of aP ,

by a∗P (C) = a∗P ⊗ C its complexification, and similarly for z. If ν ∈ a∗P (C) ⊕ z∗(C),

then the map MP (A) → C :

(2.3) m 7→ exp(⟨ν,HP (m)⟩),

where ⟨, ⟩ is the pairing between a∗P (C)⊕ z∗(C) and aP (C)⊕ z(C), defines a character

of MP (A). Moreover characters of Z(A) correspond to z∗(C) while characters that

are trivial on Z(A) correspond to a∗P (C). For convenience, when P = B we shall use

the notation a∗C for a∗P (C).

3. Representations

The object of this section is to introduce the basic notions and tools of representa-

tion theory that shall be needed for the relative trace formula – essentially for the

spectral side. The first two subsections are global. In these, we introduce the objects

that are the central topic of this work: the notion of Whittaker coefficients, which is

what appear in the final formula, and the automorphic kernel, on which the whole

relative trace formula approach is built. As explained in the introduction, and as we

shall see in more details below, the automorphic kernel Kf induces a certain operator

R(f). This corresponds to turning the regular right representation of the group G(A)

into a representation of the algebra of “nice” functions f on G(A). By choosing f
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appropriately, we can ensure that the spectral expansion of the kernel Kf – and

hence, in fine, the spectral side of the relative trace formula – can be expressed in an

orthonormal system consisting of functions that are fixed by our choice of compact

subgroup Γ, and that are moreover eigenfunctions of the operator R(f). This is the

object of the last two subsections, where we work locally, at the finite places and at

the Archimedean place respectively.

The test function f : G(A) → C that we will eventually choose has the property

that it factors as a product over all places f(g) =
∏

v fv(gv) where each fv is a

function on G(Qv). At unramified primes p, we can choose fp to correspond to an

arbitrary Hecke operator. As a result, our relative trace formula incorporates the

corresponding Hecke eigenvalues. As we explain in the last section, at v = ∞, the

local eigenvalue is given by the so-called spherical transform f̃∞. Thus, the spherical

transform f̃∞ eventually plays the role of the test function on the spectral side. In

particular, we discuss what class of test functions f̃∞ we can generate subject to our

assumptions of f . We also include a discussion of the Whittaker function and of a

certain integral transform related to it, that eventually appears in the geometric side

of the trace formula. Our objective is to relate it as explicitly as possible to the test

function f̃∞ appearing on the spectral side.

3.1. Generic representations. In this subsection, we introduce the notion

of generic representations and of Whittaker coefficients. We briefly discuss the

factorisation property of the Whittaker coefficients. We also relate the genericity of a

representation of GSp4 to that of its restriction to Sp4 (and similarly with “genericity”
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replaced with “cuspidality”). This is for the later purpose of using a result of Kim

dealing with automorphic representations on Sp4.

3.1.1. Generic characters. A character ψ of U(Q)\U(A) is said to be generic if

its differential is non-trivial on each of the eigenspaces nα corresponding to simple

roots α (where n is the Lie algebra of NB = U). Explicitly, if θ is the standard

additive character of A/Q and m = (m1,m2) ∈ (Q×)2, generic characters of U(A)

are given by

(2.4) ψm

([
1 c a−cx
x 1 a b

1 −x
1

])
= θ(m1x+m2c).

Note that all generic characters may be obtained from each other by conjugation by

an element of T/Z, as we have for all u ∈ U(A)

(2.5) ψm (u) = ψ1

(
t−1
m utm

)
,

where

(2.6) tm =

[ m1
1
m1m2

m2
1m2

]
.

In the sequel we may occasionally just write ψ for ψ1.

3.1.2. Whittaker coefficients and generic representations. If ϕ is any automorphic

form on G(A) and ψ a generic character, the ψ-Whittaker coefficient of ϕ is by

definition the function Wψ(ϕ) : G(A) → C given by

(2.7) Wψ(ϕ)(g) =

∫
U(Q)\U(A)

ϕ(ug)ψ(u)−1 du.
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ϕ is called ψ-generic if Wψ(ϕ) is not identically zero as a function of g. Changing

variable and using the left-G(Q)-invariance of ϕ, note that we have

Wψm(ϕ)(g) =
1

|m4
1m

3
2|
Wψ1(ϕ)(t

−1
m g).

In particular, ϕ is ψ-generic for some generic character ψ if and only if it is ψ-

generic for any generic character ψ, henceforth we shall just say ϕ is generic. An

irreducible automorphic representation (π, Vπ) is called generic if Vπ contains a generic

automorphic form ϕ. Equivalently, every automorphic form in the space of a generic

irreducible automorphic representation π is generic, since otherwise the kernel of the

map ϕ 7→ Wψ(ϕ) would be lead to a non-trivial invariant subspace of π, contradicting

the irreducibility of π.

If π is an irreducible generic automorphic representation, then the space of

Whittaker coefficients Wψ(ϕ) of elements ϕ ∈ π provides a ψ-global Whittaker

model of π, which is by definition a spaceWπ of functions w : G(A) → C of moderate

growth and satisfying w(ug) = ψ(u)w(g) for all u ∈ U(A), with the property that Wπ

is stable by right translation by G(A) and moreover the resulting representation is

isomorphic to π. Now by the Flath tensor product theorem, the representation π

factors as a restricted tensor product π ≃
⊗

v πv of local representations of πv. The

existence of a global Whittaker model for π then ensures that each local representation

πv also has a local Whittaker model Wπv (whose definition is a local analogue of

the global Whittaker model). Moreover, it is known that a local Whittaker model of

πv, if it exists, is unique. It can be seen that this implies that if ϕ ∈ π is a factorizable
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vector then we have for all g ∈ G(A)

(2.8) Wψ(ϕ)(g) =
∏
v

Wv(ϕv)(gv)

where Wv is an isomorphism between πv and Wπv . Now if Hv is a certain subgroup of

G(Qv) such that dim(πHv
v ) = 1 then since, by definition the action of G(Qv) on Wπv

is isomorphic to πv, it follows that Wπv contains a unique (up to scalar multiplication)

function that is right-invariant by Hv. When the subgroup Hv is implicit, we shall

loosely refer to this function as the local Whittaker function. In some cases,

the local Whittaker function can be determined by purely local methods (e.g. by

calculating the Jacquet integral at the Archimedean place, or by the Casselman-

Shalika at finite primes). The point is that if we assume moreover that ϕ is fixed

by the subgroup Hv, then the component Wv(ϕv) in (2.8) is then given (up to scalar

multiplication) by the corresponding Whittaker function. In particular, taking v = ∞,

we can factor

Wψ(ϕ)(g) = Wπ∞(g∞)Wfin(ϕ)(gfin),

whereWπ∞ is the Archimedean Whittaker function associated to the representation π∞

(for which we have explicit formulae by work of Niwa [Niw95] and Ishii [Ish05], see

below) and the product over finite places Wfin(ϕ) contains the arithmetic information.

Thus, in the final relative trace formula, we might view Wπ∞ as being part of the

spectral test function. In fact, as it turns out, the test function arising in our final

formula in front of the “arithmetic part” of the Whittaker coefficients, as well as in

various integral transforms in the geometric side (at least under Conjecture 2.5.1), is

f̃∞(νπ)Wπ∞(t1)Wπ∞(t2),
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where νπ is the spectral parameter of π∞ and t1, t2 are two fixed diagonal matrices.

We refer to subsections 3.2 and 3.4 below for more details.

Let us now return to the definition of the Whittaker coefficients. Since U may as

well be viewed as the unipotent part of the minimal parabolic subgroup of Sp4, we

can define the Whittaker coefficients of automorphic forms ϕ on Sp4 in the exact same

way as (2.7), except the argument is restricted to Sp4(A). This gives a similar notion

of generic automorphic forms and generic representations for Sp4. Later on, we shall

restrict automorphic forms on GSp4 to Sp4. Let us briefly explain the corresponding

operations on automorphic representations.

Definition 2.3.1. Let (π, Vπ) be an automorphic representation of GSp4(A)

realized by right translation on a subspace of L2(G(Q)Z(R)\G(A)). We define a

representation resπ of Sp4(A) as the action of Sp4(A) on
{
ϕ|Sp4(A) : ϕ ∈ Vπ

}
. It is a

quotient of the restriction Resπ = π|Sp4(A).

The representation res π does not have finite length in general. However, the

following shall be useful later on.

Lemma 2.3.1. Let π be an irreducible automorphic representation π of G(A) that

occurs discretely in L2(G(Q)Z(R)\G(A)). Then π is generic if and only if res π has

a generic constituent.

Proof. Fix a generic character ψ. Note that for any automorphic form ϕ on G(A)

we have Wψ(ϕ|Sp4) = (Wψ(ϕ)) |Sp4 . From this, it is clear that if res π has a generic

constituent then π is generic. Let us show the converse. Assume no constituent of
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res π is generic, so for all ϕ ∈ Vπ,

Wψ(ϕ)|Sp4(A) = 0.

Let ϕ ∈ π and g ∈ G(A). Then π(g)ϕ ∈ Vπ hence

Wψ(ϕ)(g) = Wψ(π(g)ϕ)(1) = 0.

Thus π is not generic. □

We now prove a similar lemma for the restriction of non-cuspidal representations.

Lemma 2.3.2. Let π be an irreducible automorphic representation π of G(A) that

occurs discretely in L2(G(Q)Z(R)\G(A)). Then π is non-cuspidal if and only if res π

has no cuspidal constituent.

Proof. Recall π is cuspidal if the constant term

CP (ϕ)(g) =

∫
NP (Q)\NP (A)

ϕ(ug) du

of some (equivalently, any, since π is irreducible) function ϕ in the space of π vanishes

identically for all parabolic subgroup P . The exact same proof as Lemma 2.3.1,

replacing the generic character ψ by 1 (and U by NP ), shows that π is non-cuspidal

if and only if res π has a non-cuspidal component. However, we want to show that if

π is non-cuspidal, then resπ has no cuspidal component. So suppose that res π has

a cuspidal component. This means there is ϕ ∈ Vπ such that (CP (ϕ))|Sp4(A) = 0 for

all parabolic P . We want to show that CP (ϕ) is identically zero on GSp4(A). Now

changing variables and using the left-invariance of ϕ under GSp4(Q), if t ∈ T (Q)
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then we have CP (ϕ)(tg) = Cϕ(g). In addition, if z ∈ Z(A) then Cϕ(zg) = ωπ(z)Cϕ(g).

Moreover, since π is an admissible representation, ϕ is right-invariant by GSp4(Zp)

for almost all prime p. It follows that there exists a finite set of places S such that

for any g ∈ GSp4(A), if µ(g) ∈ Q×(A×)2
∏

p ̸∈S Z×
p then CP (ϕ)(g) = 0. The following

lemma concludes the proof. □

Lemma 2.3.3. Let S be any finite set of places containing ∞. We have

Q×(A×)2
∏
p ̸∈S

Z×
p = A×.

Proof. Let x ∈ A×. By strong approximation, we have x = qu, with q ∈ Q×

and u ∈ R>0

∏
p<∞ Z×

p . Now by the Chinese Remainders Theorem, there exists an

integer n > 0 such that for all finite p ∈ S, we have nup ∈ (Z×
p )

2. For all p ̸∈ S, let

ϵp ∈ Z×
p such that ϵpnup ∈ (Z×

p )
2. Define ϵp = 1 for p ∈ S. Then nϵu ∈ (A×)2, and

x = (qn−1)(nϵu)
∏

p̸∈S ϵ
−1
p . □

3.2. The basic kernel. In this subsection we introduce the basic kernel, and

we sketch how to use it to obtain a relative trace formula involving the Whittaker

coefficients of an orthonormal basis of Γ-invariant automorphic forms. We first need

to introduce the space on which this kernel operates. Recall that we have fixed

G = GSp4, though most of the discussion is valid for arbitrary reductive algebraic

groups G over Q.

The group Z(Q)Z(R)\Z(A) is compact and it acts by right translation on the

Hilbert space L2(G(Q)Z(R)\G(A)). Since Z(Q)Z(R)\Z(A) is abelian, its irreducible
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representations are characters, thus by Peter-Weyl theorem we have

L2(G(Q)Z(R)\G(A)) =
⊕
ω

L2(G(Q)Z(R)\G(A), ω),

where the orthogonal direct sum ranges all characters of Z(A) that are trivial on

Z(Q)Z(R), and L2(G(Q)Z(R)\G(A), ω) is the subspace of L2(G(Q)Z(R)\G(A)) of

functions ϕ : G(Q)Z(R)\G(A) → C satisfying

ϕ(gz) = ω(z)ϕ(g)

for all z ∈ Z(A). Fix such a character ω. If f : G(A) → C is a measurable function

that satisfies

• f(gz) = ω(z)f(g) for all z ∈ Z(A),

• f is compactly supported modulo Z(A),

then we define an operator R(f) on L2(G(Q)Z(R)\G(A), ω) by

R(f)ϕ(x) =

∫
G(A)

f(y)ϕ(xy) dy,

where G denotes G/Z. By G(Q)-invariance of ϕ, we have

R(f)ϕ(x) =

∫
G(A)

f(x−1y)ϕ(y)dy =
∑

γ∈G(Q)

∫
G(Q)\G(A)

f(x−1γy)ϕ(y) dy.

Hence, setting for x, y ∈ G(A)

(2.9) Kf (x, y) =
∑

γ∈G(Q)

f(x−1γy),
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we have

(2.10) R(f)ϕ(x) =

∫
G(Q)\G(A)

Kf (x, y)ϕ(y) dy.

Now let us argue informally to motivate the more technical actual reasoning which

will be done later. Let us pretend that Kf(x, .) belongs to L
2(G(Q)Z(R)\G(A), ω),

and that L2(G(Q)Z(R)\G(A), ω) has a Hilbert orthonormal basis B. Then we would

have

Kf (x, .) =
∑
ϕ∈B

⟨K(x, .)|ϕ⟩ϕ.

But equation (2.10) says that ⟨Kf(x, .)|ϕ⟩ = R(f)ϕ(x). Thus we might expect a

spectral expansion of the kernel of the form

(2.11) Kf (x, y) =
∑
ϕ∈B

R(f)ϕ(x)ϕ(y).

If moreover each element ϕ of our basis B is an eigenfunction of the operator R(f),

say

(2.12) R(f)ϕ = λf (ϕ)

then the above expansion becomes

Kf (x, y) =
∑
ϕ∈B

λf (ϕ)ϕ(x)ϕ(y).

Finally, integrating Kf (xt1, yt2) on U × U against a character ψ1(x)ψ2(y) would then

yield a spectral equality involving the Whittaker coefficients and the eigenvalues
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λf (ϕ), of the form

(2.13)

∫
(U(Q)\U(A))2

Kf (xt1, yt2)ψ1(x)ψ2(y) dx dy =
∑
ϕ∈B

λf (ϕ)Wψ1(ϕ)(t1)Wψ2(ϕ)(t2).

Note that in the last step we need (2.11) to hold not only in the L2 sense, but

pointwise, as (U(Q)\U(A))2 has measure zero.

Of course, L2(G(Q)Z(R)\G(A), ω) does not have a Hilbert orthonormal basis,

due to the presence of continuous spectrum. However, after adding the proper

continuous contribution, a spectral expansion of the form (2.11) has been proved by

Arthur [Art78, pages 928-934], building on the spectral decomposition of the space

L2(G(Q)Z(R)\G(A), ω) by Langlands. We may then reduce from global to local as

follows. By general theory, we may choose automorphic forms ϕ appearing in the

spectral expansion of the kernel to be factorizable vectors ϕ∞ ⊗
⊗

p ϕp. If moreover

we take f factorizable, say f = f∞
∏

p fp, then the computation of R(f)ϕ reduces to

the computation of the action of each local component fv on ϕv. By choosing the

local components fv appropriately, we can ensure that each ϕv is an eigenvector of

the operator corresponding to fv, so that (2.12) holds. The determination of λf(ϕ)

then amounts, at the infinite place, to the study of the spherical transform of f∞,

and at finite places p, of the action of the local Hecke algebra. Specifically, from now

on we assume f is as follows.

Assumption 2.1. From now on we assume f = f∞
∏

p fp where
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• f∞ is a smooth, left and right K∞-invariant and Z(R)-invariant function

on G(R), whose support is compact modulo the centre and contained in

G◦(R) = {g ∈ G(R) : µ(g) > 0}.

• for all prime p, fp is a left and right Γp-invariant function on G(Qp), satisfying

fp(gz) = ωp(z)f(g) for all z ∈ Z(Qp), and compactly supported modulo the

centre,

• whenever Γp ̸= G(Zp), we have

fp(g) =


ωp(z)

Vol(Γp)
if there exists z ∈ Z(Qp) such that g ∈ zΓp

0 otherwise.

Note that this assumption can be fulfilled if and only if we have the following

compatibility condition

Assumption 2.2. For each prime p, the restriction of ωp to Γp ∩ Z(Qp) is trivial.

Let us recall the following result [KL13, Lemma 3.10].

Proposition 2.3.1. Let G be a locally compact group, let K ⊂ G be a closed

subgroup, and let π be a unitary representation of G on a Hilbert space V with central

character ω. Let f : G→ C be any left and right K-invariant function satisfying

• f(gz) = ω(z)f(g) for all z in the centre Z of G,

• |f | is integrable on G/Z.
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Then the operator π(f) on V defined by

π(f)v =

∫
G/Z

f(g)π(g)v dg

has its image in the K-fixed subspace V K and annihilates the orthogonal complement

of this subspace.

Because of Assumption 2.1, this result implies only Γ-fixed automorphic forms

having central character ω will appear in the spectral decomposition of Kf . These

automorphic forms come from admissible irreducible representations with central

character ω and having a Γ-fixed vector. In turn, these representations factor as

restricted tensor products of local representations having similar local properties.

Furthermore, only those automorphic forms ϕ that are generic will survive the

integration against a generic character on U , hence we may restrict attention to local

representations that are generic. We now switch to a local set-up and we treat the

finite places and the Archimedean place in the next two subsections respectively.

3.3. Non-Archimedean Hecke algebras. Let p be a prime number, and let

fp : G(Qp) → C be the local component of the function f in Assumption 2.1. Let

(π, V ) be a unitary representation of G(Qp) with central character ωp. Throughout

this section the Haar measure on G(Qp) is normalised so that Kp = G(Zp) has volume

one. By Proposition 2.3.1 we have an operator

(2.14) π(fp)v =

∫
G(Qp)

f(g)π(g)v dg.
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acting on the Γp-fixed subspace V Γp and annihilating the orthogonal complement of

this subspace.

First, let us consider the case Γp ̸= G(Zp). Then any Γp-fixed vector v ∈ V is also

fixed by π(fp), since in this case by Assumption 2.1 we have

π(fp)v =
1

Vol(Γp)

∫
Γp

π(g)v dg = v.

We now turn to the situation Γp = Kp = G(Zp) (in particular, the character ωp

must be unramified). We have have the following [RS07, Theorem 7.5.1].

Proposition 2.3.2. Let (π, V ) be an irreducible, admissible, representation of

G(Qp). Assume π has a non-zero Kp-fixed vector. Then V Kp has dimension 1.

Remark 2.3.1. In [RS07, Theorem 7.5.1] it is assumed π has trivial central

character. However, in our situation, the fact that π has a non-zero Kp-fixed vector

forces the central character to be unramified. We can thus twist our representation by

an unramified character to reduce to the hypothesis of [RS07].

By definition, any non-zero vector ϕ in V Kp is then called the spherical vector.

Since π(fp) acts on V
Kp which is one-dimensional, the spherical vector is an eigenvector

of π(fp). Finally, let us relate the operator π(fp) to the action of the unramified

Hecke algebra. The local Hecke algebra H(Kp) is the vector space of left and

right Kp-invariant compactly supported functions f : G(Qp) → C, endowed with the

convolution product

(f ∗ h)(g) =
∫
G(Qp)

f(gx−1)h(x) dx.
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If (π, V ) is a smooth representation of G(Qp), then the Hecke algebra H(Kp) acts on

the Kp-invariant subspace V
Kp by

π(f)v =

∫
G(Qp)

f(g)π(g)v dg.

Lemma 2.3.4. Let f be a bi-Kp-invariant function on G(Qp), with a (unramified)

central character, and compactly supported modulo the centre. There exists a compactly

supported bi-Kp-invariant function f̃ on G(Qp) and a complete set of representatives

G of G(Qp)/Q×
p satisfying f̃(gz) = f(g)1Z×

p
(z) for all g ∈ G and z ∈ Q×

p .

Proof. By the Cartan decomposition we have

G(Qp) =
∐
i,j,t∈Z
i≤j≤t−j

Kp

[
pi

pj

pt−i

pt−j

]
Kp.

Thus we have

G(Qp)/Q×
p =

∐
j≥0
t≥2j

Kp

[
1
pj

pt

pt−j

]
Kp

/Z×
p .

Fix a complete set of representatives Kp of Kp/Z×
p . Then

G =
∐
j≥0
t≥2j

Kp

[
1
pj

pt

pt−j

]
Kp

is a complete set of representatives of G(Qp)/Q×
p . Moreover, defining

S =
∐
j≥0
t∈Z

Kp

[
1
pj

pt

pt−j

]
Kp ∩ Supp(f) = (Z×

p G) ∩ Supp(f),
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the function f̃ = 1S × f has the desired properties. □

Now the function f̃p attached to fp by Lemma (2.3.4) is an element of the Hecke

algebra, and we have π(f̃p) = π(fp), as

π(f̃p)v =

∫
G(Qp)

f̃(g)π(g)v dg =

∫
G(Qp)/Q×

p

∫
Q×

p

fp(g)1Z×
p
(z)π(g)v dz dg = π(fp)v.

We summarize the above discussion in the following proposition.

Proposition 2.3.3. Let p be a prime number, and fp be the local component of

the function f in Assumption 2.1. Let (π, V ) be an irreducible unitary representation

of G(Qp) with central character ωp. Then the operator π(fp) from Proposition 2.3.1

acts by a scalar λπ(fp) on the Γp fixed subspace V Γp and annihilates the orthogonal

complement of this subspace. Moreover, if Γp ̸= G(Zp) then λπ(fp) = 1, and if Γp =

G(Zp) then π(fp) equals the Hecke operator π(f̃p), where f̃p is given by Lemma 2.3.4.

3.4. The Archimedean representation. In this section we discuss various

aspects of the Archimedean component of the automorphic representations involved

in the spectral expansion of the automorphic kernel Kf . We first show that in our

situation this representation must be an irreducible principal series representation,

that is full induced from the Borel subgroup. A representation of G(R) which has a

non-zero K∞-fixed vector is called spherical.

Proposition 2.3.4. Any generic irreducible spherical representation (π, V ) of

G(R) is a principal series representation.
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The author wishes to thank Ralf Schmidt for communicating the following argu-

ment.

Proof. As explained at the end of [Vog78], the generic representations are exactly

the “large” ones, i.e., those with maximal Gelfand-Kirillov dimension. The Gelfand-

Kirillov dimension of all irreducible representations of GSp4(R) have been calculated

in [Ver19, Appendix A]. In particular the maximal Gelfand-Kirillov dimension is

4, and the irreducible large representations are either discrete series or limit of

discrete series, induced from the Siegel parabolic subgroup, Langlands quotient of

representation induced from the Klingen subgroup, or principal series representations.

Now the multiplicity of each possible K∞-type are described in [Ver19, Chapter 4],

and among large representations of GSp4(R) only principal series representations

contain the trivial K∞-type. □

It is then known by [Ver19, Chapter 4] that the trivial K∞-type occurs in π with

multiplicity one, that is to say there is a unique (up to scalar multiplication) K∞-fixed

vector in the space V . Moreover, π has a unique Whittaker model, and the image

of a non-zero K∞-fixed vector is by definition given by the Whittaker function.

The Whittaker function is an eigenfunction of the centre of the universal enveloping

algebra, which acts as an algebra of differential operators. One may then obtain a

system of partial differential equations characterizing the Whittaker function, and

compute it explicitly. The Whittaker function may also be computed by the mean of

the Jacquet integral. This has been done by Niwa [Niw95] and Ishii [Ish05]. We

shall return to this in § 3.4.3 below.
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3.4.1. The spherical transform. In this section we discuss the spherical transform

for Sp4(R), which in some sense is the Archimedean analogue of the Hecke operators

studied in subsection 3.3. Note that the arguments of this section work, with the

required modifications, for an arbitrary real connected semisimple Lie group with

finite centre (see [Hel84]). We normalize the Haar measure on Sp4(R) so that K∞

has measure 1. If h is any bi-K∞-invariant compactly supported function on Sp4(R),

its spherical transform is the function h̃ defined on a∗(C) by

(2.15) h̃(ν) =

∫
Sp4(R)

h(g)ϕ−ν(g) dg,

where

(2.16) ϕ−ν(g) =

∫
K∞

e⟨ρ−ν,A(kg)⟩ dk

is the spherical function with parameter −ν (here ρ is the half-sum of positive

roots).

Proposition 2.3.5. Let f∞ be the Archimedean component of the function f

in Assumption 2.1. Let (π, V ) be a generic irreducible unitary representation rep-

resentation of G(R) with trivial central character. Then the operator π(f∞) from

Proposition 2.3.1 acts by a scalar λπ(f∞) on the K∞ fixed subspace V K∞ and annihi-

lates the orthogonal complement of this subspace. Moreover, provided this subspace

V K∞ is non zero, then π is a principal series representation, and λπ(f∞) = f̃∞(−ν),

where f̃∞ is the spherical transform of f∞ and ν is the spectral parameter of π.

Proof. If V K∞ is zero then by Proposition 2.3.1 the statement is vacuous.

Assume now π has a non-zero fixed vector. By Proposition 2.3.4, π is then a principal
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series. Then V K∞ is one-dimensional, so if v is any K∞-fixed vector in V then we

have

(2.17) π(f∞)v = λπ(f∞)v

for some complex number λπ(f). Since π is induced by a character of the Borel

subgroup, to compute the eigenvalue λπ(f), we may realize π as acting by right

translation on a space of functions ϕ satisfying for all g ∈ G(R), u ∈ U(R) and

a ∈ T+(R)

(2.18) ϕ(uag) = e⟨ρ+ν,log(a)⟩ϕ(g),

where ν ∈ a∗(C) is the spectral parameter of π. We may view a Z(R)-invariant

function supported on G(R)+ as a function on Sp4(R), so the operator π(f) of

Proposition 2.3.1 is given by

(2.19) π(f∞)v =

∫
G(R)

f∞(g)π(g)v dg =

∫
Sp4(R)

f∞(g)π(g)v dg.

If ϕ is a non-zero K∞-fixed function satisfying (2.18) then because of the Iwasawa

decomposition we must have ϕ(1) ̸= 0. Using the integration formula [Hel84,

Ch. I Corollary 5.3] and right-K∞ invariance we may compute

π(f∞)ϕ(1) =

∫
Sp4(R)

f∞(g)π(g)ϕ(1) dg

=

∫
K∞

∫
UA+

f∞(au)ϕ(au) da du dk =

∫
UA+

f∞(au)e⟨ρB+ν,log(a)⟩ da duϕ(1),

where A+ is the subgroup of A(R) with positive diagonal entries. Therefore, using

the Iwasawa decomposition and left-K∞ invariance of f∞, the eigenvalue λπ(f) is
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given by

λπ(f) =

∫
Sp4(R)

f∞(g)e⟨ρ+ν,A(g⟩ dg

=

∫
K∞

∫
Sp4(R)

f∞(g)e⟨ρ+ν,A(kg)⟩ dg dk =

∫
Sp4(R)

f∞(g)ϕν(g) dg = f̃∞(−ν).

□

The spherical transform f̃∞ will thus play the role of the test function on the

spectral side of our formula. On the other hand, the geometric side will involve

some different integral transforms of our test function f∞. It is therefore natural to

investigate the analytic properties of f̃∞, and to seek to recover f∞ from f̃∞. This

can be achieved by the Paley-Wiener theorem and Harish-Chandra inversion theorem.

3.4.2. The Paley-Wiener theorem and Harish-Chandra inversion theorem. The

material in this section is taken from [Hel84]. As in 3.4.1, the arguments are valid for

arbitrary real connected semisimple Lie groups with finite centre. Let us introduce a

bit of notation. We denote by ⟨, ⟩ the Killing form on the Lie algebra of Sp4(R), and

we define for each ν ∈ a∗ a vector Aν ∈ a by ν(H) = ⟨Aν , H⟩ for all H ∈ a. We then

define ⟨λ, ν⟩ = ⟨Aλ, Aν⟩. We define a+ as the subset of elements H ∈ a satisfying

α(H) > 0 for all α ∈ ΦB, and a∗+ = {ν ∈ a : Aν ∈ a+}. Explicitly the Killing form is

given by ⟨X, Y ⟩ = 6Tr(XY ) and a+ =

{[ x
y

−x
−y

]
: 0 < x < y

}
.

Harish-Chandra’s c-function captures the asymptotic behaviour of the spherical

function and it gives the Plancherel measure. More precisely, by Theorem 6.14
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of [Hel84, Chap. IV], if H ∈ a+ and ν ∈ a∗+ then we have

lim
t→+∞

e⟨−ν+ρ,tH⟩ϕ−iν(exp(tH)) = c(−iν).

Moreover, c(ν) is given, for ν ∈ a∗+, by the absolutely convergent integral

(2.20) c(ν) =

∫
U(R)

e⟨ν+ρ,A(Ju)⟩ du,

where the measure du is normalized so that c(ρ) = 1, and has meromorphic continua-

tion to a∗(C) given in our situation by the expression

c(−iν) = c0
∏
α∈Φ

2−⟨iν,α0⟩Γ(⟨iν, α0⟩)

Γ
(

3
2
+⟨iν,α0⟩

2

)
Γ
(

1
2
+⟨iν,α0⟩

2

) ,
where Φ is the set of roots, α0 = α

⟨α,α⟩ and the constant c0 is such that c(ρ) = 1.

Using the duplication formula Γ(z)Γ(z + 1
2
) = π

1
221−2zΓ(2z), we can rewrite this as

c(−iν) = c0
4π2

∏
α∈Φ

Γ(⟨iν, α0⟩)
Γ(1

2
+ ⟨iν, α0⟩)

.

We then have the following theorems

Theorem 2.3.1 (Paley-Wiener theorem). Let H R(a∗C) the set of Ω-invariant

entire functions h on a∗C such that for all N ≥ 0 we have

h(ν) ≪N (1 + |ν|)−NeR|ℜ(ν)|.

Let

H (a∗C) =
⋃
R>0

H R(a∗C).
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Then the spherical transform f 7→ f̃ is a bijection from C∞
c (K∞\ Sp4(R)/K∞)

to H (a∗C).

Theorem 2.3.2 (Inversion theorem). There is a constant c such that for every

function f ∈ C∞
c (K\ Sp4(R)/K) we have for all g ∈ Sp4(R)

(2.21) cf(g) =

∫
a∗
f̃(−iν)ϕ−iν(g)

dν

c(iν)c(−iν)
.

Remark 2.3.2. The constant c may be worked out by Exercise C.4 of [Hel84,

Chap. IV].

Remark 2.3.3. Using formulae Γ(iz)Γ(−iz) = π
z sinhπz

and Γ(1
2
− iz)Γ(1

2
+ iz) =

π
coshπz

, the Plancherel measure is given by

(2.22)
dν

c(iν)c(−iν)
=

16π4

c20

∏
α∈Φ

⟨ν, α0⟩ tanh(π⟨ν, α0⟩)dν.

3.4.3. The Whittaker function and the Jacquet integral. As mentioned above, the

Whittaker function is a non-zero K∞-fixed vector in the Whittaker model, and it

is unique up to scaling. It is given by (meromorphic continuation of) the Jacquet

integral. Namely, if ψ is a generic character of U(R), we have the Jacquet integral

(2.23) W (ν, g, ψ) =

∫
U(R)

e⟨ρ+ν,A(Jug)⟩ψ(u) du.

The Jacquet integral converges absolutely for ℜ(ν) ∈ a∗+, as may be seen by using

the absolute convergence of (2.20) and computing

(2.24) |W (ν, g, ψ)| ≤
∫
U(R)

|e⟨ν+ρ,A(Jug)⟩| du = e⟨ρ−ℜ(ν),A(g)⟩c(ℜ(ν)).
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Moreover, it has meromorphic continuation to all ν ∈ a∗C. Ishii [Ish05] computed

explicit integral representations for the normalized Jacquet integral

(2.25) W(ν, g, ψ) =
1

4π2

∏
α∈Φ

Γ

(
1

2
+ ⟨ν, α0⟩

)
W (ν, g, ψ),

namely if a =

[ a1
a2

a−1
1

a−1
2

]
∈ A+ then for any ν ∈ a∗C we have (note the different

choice of minimal parabolic subgroup)

(2.26)

W(ν, a, ψ) = 2a1a
2
2

∫ ∞

0

∫ ∞

0

K ν2−ν1
2

(2πv1)K ν1+ν2
2

(2πv2)

× exp

(
−π
(
a22
v1v2

+
v1v2
a21

+ a21

(
v1
v2

+
v2
v1

)))
dv1dv2
v1v2

.

This implies in particular that the normalized Jacquet integral satisfies the functional

equations

(2.27) W(σ · ν, g, ψ) = W(ν, g, ψ)

for all σ ∈ Ω. If t ∈ A+ and if we denote by ψt the character ψt(u) = ψ(t−1ut), then it

is easy to see (first by a change of variable in the domain where the Jacquet integral

is absolutely convergent, then by meromorphic continuation) that

(2.28) W (ν, g, ψt) = e⟨ρ−ν,log(t)⟩W (ν, t−1g, ψ).

3.4.4. Wallach’s Whittaker transform. Theorem 2.3.3 below is a consequence

of [Wal92, Ch. 15], which is valid for arbitrary real reductive groups. However

in order to avoid introducing additional notation, we stick to the case of Sp4(R).

Let C∞
c (U\ Sp4(R)/K, ψ) be the space of functions f on Sp4(R) satisfying f(ugk) =
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ψ(u)f(g) for all u ∈ U(R), for all k ∈ K∞ and for all g ∈ Sp4(R), and such that f is

smooth and has a compact support modulo U(R).

Theorem 2.3.3 (Wallach’s Whittaker inversion). For f ∈ C∞
c (U\ Sp4(R)/K, ψ)

define the Whittaker transform

W (f)(ν) = c

∫
A+

f(a)W (iν, a, ψ)e−2⟨ρ,log a⟩ da,

where the constant c is the same as in Theorem 2.3.2. Then we have

f = T (W (f)),

where

T (α)(a) =

∫
a∗
α(ν)W (−iν, a, ψ) dν

c(iν)c(−iν)
.

3.4.5. An integral transform. Let g ∈ G(R), t ∈ A+ and let ψ be a generic

character of U(R). When dealing with the geometric side of the relative trace formula,

we shall be interested in the integral

I(f∞) =

∫
U(R)

f∞(tug)ψ(u) du.

Using expression (2.16) and applying Theorem 5.20 of [Hel84, Ch.I] that relates

integration on K∞ to integration on U(R), one may establish the following identity

for all ν ∈ a∗C

(2.29) ϕν(g) =

∫
U(R)

e⟨ρ+ν,A(Jug)⟩e⟨ρ−ν,A(Ju)⟩ du.
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From this identity, ignoring convergence issues and treating integrals as if they were

absolutely convergent, one may heuristically expect the following

(2.30)

∫
U(R)

ϕν(tug)ψ(u) du = W (ν, g, ψ)W (−ν, t−1, ψ).

However, the domain of absolute convergence of the two Jacquet integral in the right

hand side are complementary from each other, and the integral in the left hand side

is likely not absolutely convergent, making such a result, where the left hand side

is (optimistically) a semi-convergent integral and the right-hand side is defined by

meromorphic continuation, likely difficult to prove.

Carrying on with this heuristic and using Theorem 2.3.2, let us write

cI(f∞) =

∫
U(R)

∫
a∗
f̃∞(−iν)ϕ−iν(tug)

dν

c(iν)c(−iν)
ψ(u) du

=

∫
a∗
f̃∞(−iν)

∫
U(R)

ϕ−iν(tug)ψ(u)du
dν

c(iν)c(−iν)

=

∫
a∗
f̃∞(−iν)W (−iν, g, ψ)W (iν, t−1, ψ)

dν

c(iν)c(−iν)
.

Unlike (2.30), this equality seems more reasonable. Indeed, the left hand side is

absolutely convergent because f∞ is compactly supported, and in the right hand side

f̃∞ has rapid decay. We now give a rigorous proof of the following theorem.

Theorem 2.3.4. Let f∞ be a smooth, bi-K∞-invariant, compactly supported

function on Sp4(R). Let g1, g2 ∈ G(R), and let ψ be a generic character of U(R).

Then we have

c

∫
U(R)

f∞(g2ug1)ψ(u) du =

∫
a∗
f̃∞(−iν)W (−iν, g1, ψ)W (iν, g−1

2 , ψ)
dν

c(iν)c(−iν)
,
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where W (ν, ·, ψ) is the ψ-Whittaker function of the principal series with spectral

parameter ν.

Remark 2.3.4. Note that Wallach’s Whittaker inversion theorem holds true for

arbitrary real reductive groups. Thus Theorem 2.3.4 also holds true for general real

reductive groups (with the relevant notations).

Proof. In the variable g1, both sides transform on the left by U(R) according to

ψ, and are K∞-invariant on the right. Thus by the Iwasawa decomposition, it suffices

to prove it for g1 = a ∈ A+. Similarly, in the variable g2, both sides transform on the

right by U(R) according to ψ, and are K∞-invariant on the left, thus it suffices to

prove it for g2 = t ∈ A+. Also, by (2.28), we may restrict ourselves to t = 1. With

notations of Theorem 2.3.3, we have∫
a∗
f̃∞(−iν)W (−iν, a, ψ)W (iν, 1, ψ)

dν

c(iν)c(−iν)
= T (α)(a),

where

α(ν) = f̃∞(−iν)W (iν, 1, ψ).

Moreover the map F : g 7→
∫
U(R) f∞(ug)ψ(u) du belongs to C∞

c (U\ Sp4(R)/K, ψ) since

f∞ is smooth and compactly supported. Hence by Wallach’s Whittaker inversion it

suffices to show that α = W (F ), that is for all ν ∈ a∗ we have

(2.31) α(ν) =

∫
A+

e−2⟨ρ,log a⟩
∫
U(R)

f∞(ua)ψ(u) duW (iν, a, ψ) da.

Since both sides are meromorphic in ν, it suffices to show this for ℜ(iν) ∈ a∗+. In

this region, the Jacquet integral W (iν, a, ψ) =
∫
U(R) e

⟨ρ+iν,A(Ju1a)⟩ψ(u1)du1 converges
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absolutely. Hence the integral in (2.31) may then be written as∫
A+

∫
U(R)

f∞(au)ψ(aua−1) duW (iν, a, ψ) da =

∫
A+

∫
U(R)

f∞(au)W (iν, au, ψ) du da

=

∫
A+

∫
U(R)

f∞(au)

∫
U(R)

e⟨ρ+iν,A(Ju1au)⟩ψ(u1) du1 du da.

Write Ju1 = u2 exp(A(Ju1))k0(Ju1) with u2 ∈ U(R) and k0(Ju1) ∈ K∞. Then

A(Ju1au) = A(Ju1) + A(k0au). So the integral we have to evaluate becomes∫
A+

∫
U(R)

e⟨ρ+iν,A(Ju1)⟩ψ(u1)

∫
U(R)

f∞(au)e⟨ρ+iν,A(k0(Ju1)au)⟩ du du1 da

=

∫
A+

∫
U(R)

e⟨ρ+iν,A(Ju1)⟩ψ(u1)

∫
Sp4(R)

f∞(g)e⟨ρ+iν,A(k0(Ju1)g)⟩ dg du1 da

=

∫
A+

∫
U(R)

e⟨ρ+iν,A(Ju1)⟩ψ(u1)

∫
Sp4(R)

f∞(g)e⟨ρ+iν,A(g)⟩ dg du1 da

= W (iν, 1, ψ)f̃(−iν).

□

3.4.6. Estimates for the Whittaker function. We close this section with some

estimates for the Whittaker function to be used later on. We begin with recalling the

following estimate for Bessel K functions from [HM06, Proposition 7.2].

Lemma 2.3.5. Let σ > 0. For ℜ(ν) ∈ [−σ, σ] we have for all ϵ > 0

Kν(u) ≪σ,ϵ

 (1 + |ℑ(ν)|)σ+ϵu−σ−ϵ if 0 < u ≤ 1 + π
2
|ℑ(ν)|,

u−
1
2 e−u if u > 1 + π

2
|ℑ(ν)|.
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In the following lemma, we have only used trivial bounds and haven’t sought for

optimality.

Lemma 2.3.6. Let σ > 0. Let ν ∈ a∗C with −σ < ℜ(ν1−ν2)
2

, ℜ(ν1+ν2)
2

< σ and a ∈ A+.

For simplicity, set r1 =
|ℑ(ν1−ν2)|

2
and r2 =

|ℑ(ν1+ν2)|
2

. Then for all ϵ > 0 we have

W(ν, a, ψ) ≪ (1 + r1)
σ+1+ϵ(1 + r2)

σ+1+ϵa1a
−2σ−ϵ
2

+ (1 + r1)
− 3

2 (1 + r2)
− 3

2a1a
2
2

+ (1 + r1)
σ+ϵ(1 + r2)

−(σ+ 5
2
+ϵ)a−2σ−1−ϵ

1 a22

+ (1 + r1)
−(σ+ 5

2
+ϵ)(1 + r2)

σ+ϵa−2σ−1−ϵ
1 a22.

Proof. This follows from the explicit integral representation (2.26) together with

Lemma 2.3.5. □

Proposition 2.3.6. Let a ∈ A+. Then, for ℜ(ν) small enough we have for

all ϵ > 0

W (ν, a, ψ) ≪ℜ(ν),a

∏
α∈Φ

|⟨ℑ(ν), α0⟩|2|⟨ℜ(ν),α0⟩|+ϵ.

Proof. First observe that, if ℜ(ν) ∈ a∗+, then the claim follows from the trivial

bound (2.24). Next, if ℜ(ν) belongs to any open Weyl chamber, there is σ ∈ Ω such

that Re(σ · ν) ∈ a∗+. The functional equation (2.27) gives

W (ν, a, ψ) =
∏
α∈Φ

Γ
(
1
2
+ ⟨σ · ν, α0⟩

)
Γ
(
1
2
+ ⟨ν, α0⟩

) W (σ · ν, a, ψ).
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Since the Weyl group acts by permutation on the set of (positive and negative) roots,

the product can be written as

∏
α∈Φσ

Γ
(
1
2
− ⟨ν, α0⟩

)
Γ
(
1
2
+ ⟨ν, α0⟩

) ≪
∏
α∈Φσ

|⟨ℑ(ν), α0⟩|−2⟨ℜ(ν),α0⟩,

where Φσ is the set of positive roots whose image by σ is a negative root and we

have used that |Γ(x + iy)| ∼
√
2πe−

π
2
|y||y|x− 1

2 as |y| → ∞ and that the numerator

has no poles because ℜ(ν) is small enough. But if σ · α is a negative root then we

have ⟨ℜ(ν), α0⟩ < 0 and so we are done in this case again. Finally, if ℜ(ν) belongs

to a wall of a Weyl chamber, by Lemma 2.3.6 we may apply the Phragmén-Lindelöf

principle to deduce the result. □

4. Eisenstein series and the spectral decomposition

The goal of Eisenstein series is to describe the continuous spectrum. The latter is

an orthogonal direct sum over standard parabolic subgroups P , each summand of

which is a direct integral parametrized by ia∗P . Eisenstein series will give intertwining

operators from some representation induced from MP to the corresponding part of

the continuous spectrum. One thus wants to define E(·, ϕ, ν) for ϕ in the space HP of

the aforementioned induced representation, and for ν ∈ ia∗P . Because of convergence

issues, one originally defines E(·, ϕ, ν) for ϕ lying a certain dense space of automorphic

forms H 0
P ⊂ HP and for ν ∈ a∗P (C) with large enough real part. The definition is

then extended to all ϕ in the completion of H 0
P and to all ν ∈ a∗P (C). Our exposition

follows Arthur, and in particular [Art05]. As before, we are setting G = GSp4, but



92 CHAPTER 2. KUZNETSOV FORMULA

the results discussed here hold (with the necessary modifications) in more generality,

namely for any connected reductive group over Q.

4.1. Definition of Eisenstein series. Fix a standard parabolic subgroup

P = NPMP throughout this section, and let AP be the centre of MP , and A+
P (R)

be the connected component of 1 in AP (R). Let RMP ,disc be the restriction of the

right regular representation of MP (A) on the subspace of L2(MP (Q)A+
P (R)\MP (A))

that decompose discretely. For ν ∈ a∗P (C), consider the tensor product given by

RMP ,disc,ν(x) = RMP ,disc(x)e
⟨ν,HMP

(x)⟩ for x ∈ MP (A). The continuous spectrum is

described via the Eisenstein series in terms of the induced representation

IP (ν) = Ind
G(A)
P (A)(INP (A)⊗RMP ,disc,ν).

The space of this induced representation is independent of ν and is given in the

following definition.

Definition 2.4.1. With notations as above, define HP to be the Hilbert space

obtained by completing the space H 0
P of functions

(2.32) ϕ : NP (A)MP (Q)A+
P (R)\G(A) → C

such that

(1) for any x ∈ G(A), the functionMP (A) → C,m 7→ ϕ(mx) is ZMP
-finite, where

ZMP
is the centre of the universal enveloping algebra of MP (C),

(2) ϕ is right K-finite,

(3) ∥ϕ∥2 =
∫
K

∫
AP (R)+MP (Q)\MP (A) |ϕ(mk)|2 dm dk <∞.
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Then the representation IP (ν) acts on HP via

(IP (ν, y)ϕ)(x) = ϕ(xy) exp(⟨ν + ρP , HP (xy)⟩) exp(−⟨ν + ρP , HP (x)⟩)

for x, y ∈ G(A), and is unitary for ν ∈ iaP (C).

We now define the Eisenstein series attached to P . We extend HP to P (Q)\G(A)

by setting HP (nmk) = HP (m) (n ∈ NP ,m ∈MP , k ∈ K), therefore the expression in

the following proposition is well defined.

Proposition 2.4.1. For ν ∈ a∗P (C) with large enough real part, if x ∈ G(A) and

ϕ ∈ H 0
P , the Eisenstein series

E(x, ϕ, ν) =
∑

δ∈P (Q)\G(Q)

ϕ(δx) exp(⟨ν + ρP , HP (δx)⟩)

converges absolutely.

The relation between the induced representation IP (ν, y) on HP defined above

and the regular right representation on the corresponding space of Eisenstein series is

given formally by

E(x,IP (ν, y)ϕ, ν) = E(xy, ϕ ν).

Langlands provided analytic continuation of Eisenstein series, as well as the spectral

decomposition of L2(Z(R)G(Q)\G(A)). The latter gives a decomposition of the right

regular representation R as direct sum over association classes of parabolic subgroups.

The class of G, viewed as a parabolic subgroup itself, gives the discrete spectrum.

It consists on one hand of cuspidal functions on Z(R)G(Q)\G(A) and on the other

hand of residues of Eisenstein series attached to proper parabolic subgroups. The
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contribution of the other classes is given by direct integrals of corresponding induced

representations and gives the continuous spectrum. For a nice survey, we refer the

reader to [Art05]. We now describe explicitly the Eisenstein series that are relevant

for us.

4.2. Action of the centre and of the compact Γ. Since our test function

f is bi-Γ-invariant and has central character ω, Eisenstein series occurring in the

spectral expansion of its kernel Kf are only from the subspaces of HP satisfying

similar properties (see Lemma 2.4.5 below for a formal justification). Using the

Peter-Weyl Theorem, we can further deduce:

Lemma 2.4.1. Let P be a standard parabolic subgroup and AP it centre. Let H Γ
P (ω)

be the closed subspace of HP consisting in functions ϕ such that for all z ∈ Z(A) and

k ∈ Γ, we have ϕ(zgk) = ω(z)ϕ(g). Then

(2.33) H Γ
P (ω) =

⊕
χ

H Γ
P (χ)

where the χ-orthogonal direct sum ranges over characters of A+
P (R)AP (Q)\AP (A)

that coincide with ω on Z(A), and H Γ
P (χ) is the subspace of H Γ

P (ω) consisting in

functions ϕ such that for all z ∈ AP (A), ϕ(zg) = χ(z)ϕ(g).

4.3. Explicit description of Eisenstein series. Write the decomposition of

RMP ,disc into irreducible representations π =
⊗

v πv of MP (A)/AP (R)+ as RMP ,disc =⊕
π π =

⊕
π (
⊗

v πv). Then we have

IP (ν) =
⊕
π

IP (πν) =
⊕
π

(⊗
v

IP (πv,ν)

)
.
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Moreover the representation space of each IP (πν) does not depend on ν. Hence, to

describe the spaces H Γ
P (χ) it suffices to describe

• the irreducible representations π with central character χ occurring RMP ,disc,

• the Γ-fixed subspace of each representation IP (πν).

By the Iwasawa decomposition, elements of this space may be viewed as families of

functions indexed by K/Γ satisfying some compatibility condition that we proceed to

make explicit now. We also prove that the Archimedean part of IP (πν) is a principal

series representation, and we provide its spectral parameter.

4.3.1. Borel Eisenstein series.

Lemma 2.4.2. The irreducible representations occurring in RT,disc are precisely

characters χ of T+(R)T (Q)\T (A). Let χ be such character and ν ∈ ia∗. The

Archimedean part of IB(χν) is an irreducible principal series representation with

spectral parameter ν.

Proof. The first part is because T+(R)T (Q)\T (A) is abelian. For the second

part, since χ∞ = 1 we have IB(χν)∞ = IB(e
ν), which is irreducible because ν ∈ ia∗

(see [Mui09, Lemma 5.1]). □

Characters χ of T+(R)T (Q)\T (A) that coincide with ω on Z(A) are in one-to-

one correspondence with triplets (ω1, ω2, ω3) of characters of R>0Q×\A× satisfying

ω1ω2ω
2
3 = ω, via

χ

([ x
y
tx−1

ty−1

])
= ω1(x)ω2(y)ω3(t).
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Define a character of B by

ω

([ x ∗ ∗ ∗
y ∗ ∗
tx−1 ∗

ty−1

])
= ω1(x)ω2(y)ω3(t)

(note that this notation is sound, as it coincides with our original ω on scalar matrices).

Proposition 2.4.2. Let χ = (ω1, ω2, ω3) with ω1ω2ω
2
3 = ω. Consider (ϕk)k∈K/Γ

such that

(1) for all k, ϕk ∈ C,

(2) if γ ∈ K ∩B(A) then for all k, ϕk = χ(γ−1)ϕγk.

Then the function on G(A) given for u ∈ U(A), t ∈ T (A), k ∈ K by

(2.34) ϕ(utk) = χ(t)ϕk,

is well-defined and belongs to HB
Γ(χ). Moreover, every function in HB

Γ(χ) has this

shape.

Proof. We first prove that ϕ is well-defined. Suppose u1t1k1 = u2t2k2. In

particular k1k
−1
2 = (u1t1)

−1(u2t2) ∈ B(A) ∩K. Therefore

χ(t1)ϕk1 = χ(t1)χ(k1k
−1
2 )ϕk2 = χ(t2)ϕk2 .

Next we show that ϕ belongs indeed to HB
Γ(ω1, ω2, ω3). The fact that ϕ is invariant on

the left by U(A)T (Q)T (R)+, the right invariance by Γ and the fact that ϕ transforms
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under T (A) according to χ are obvious from the definition. Finally,∫
K

∫
T (R)+T (Q)\T (A)

|ϕ(mk)|2 dm dk =

∫
K

∫
(R>0Q×\A×)3

|ϕk|2 dm dk

= Vol(R>0Q×\A×)3Vol(Γ)
∑

k∈K/Γ

|ϕk|2 <∞

since R>0Q×\A× is compact and K/Γ is finite. As a last point, we show that we thus

exhaust all of HB
Γ(ω1, ω2, ω3). Let ϕ ∈ HB

Γ(ω1, ω2, ω3). Define

ϕk = ϕ(k).

Then it is clear that equation (2.34) holds. As for condition 2, note that if γ = tγuγ ∈

K ∩B(A) with tγ ∈ T (A) and uγ ∈ U(A) then

ϕγk = ϕ(γk)

= ϕ(tγuγk) = χ(tγ)ϕ(k)

= χ(γ)ϕk.

□

Remark 2.4.1. Consider the action of K ∩ B(A) on K/Γ by multiplication on

the left. Then the compatibility condition 2. can only be met if χ is trivial on the

stabilizer of each element k ∈ K/Γ such that ϕk ≠ 0. Thus the dimension of HB
Γ(χ)

is the number of distinct orbits of such elements.

4.3.2. Klingen Eisenstein series. The set of characters χ of AK
+(R) AK(Q)\AK(A)

that coincide with ω on Z(A) is in one-to-one correspondence with pairs (ω1, ω2) of
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characters of R>0Q×\A× satisfying ω1ω2 = ω, via

χ
([ u

t
u
t−1u2

])
= ω1(u)ω2(t).

For convenience, if A = [ a bc d ] ∈ GL2, define ιA =

[
a b
1

c d
det(A)

]
∈ MK .

Lemma 2.4.3. Let χ = (ω1, ω2) with ω1ω2 = ω. The irreducible representations

with central character χ occurring in RMK,disc are twists ω2 ⊗ π, where π occurs in

the discrete spectrum of L2(R>0GL2(Q)\GL2(A)) and has central character ω1.

Proof. Let π be an irreducible representations with central character χ oc-

curring in RMK,disc. By definition, the space of π is contained in the subspace of

L2(MK(Q)AK
+(R)\MK(A)) consisting of functions with central character χ. This

subspace identifies with the space L2(R>0GL2(Q)\GL2(A), ω1) via

ϕ 7→
([

a b
t

c d
t−1 det(A)

]
7→ ω2(t)ϕ([ a bc d ])

)
.

□

Proposition 2.4.3. Let χ = (ω1, ω2) with ω1ω2 = ω. Let (π, Vπ) occur in the

discrete spectrum of L2(R>0GL2(Q)\GL2(A)) with central character ω1. Consider

(ϕk)k∈K/Γ such that

(1) for all k, ϕk ∈ Vπ,

(2) if γ ∈ K ∩ PK(A) then for all k, ϕk(·ProjGL2
PK

(γ)) = ω2 ◦ ProjGL1
PK

(γ−1)ϕγk.

Then the function on G(A) given for n ∈ NK(A),m ∈ MK(A), k ∈ K by

(2.35) ϕ(nmk) = ω2 ◦ ProjGL1
PK

(m)ϕk(Proj
GL2
PK

(m))
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is well-defined and belongs to IPK
((ω2 ⊗ π)ν)

Γ. Moreover, every function belonging

to IPK
((ω2 ⊗ π)ν)

Γ has this shape.

Remark 2.4.2. Condition (2) implies that each ϕk is right-SO2(R)-invariant (and

hence must be an adelic Maaß form or a character). Indeed, let v ≤ ∞ and let kv be

a compact subgroup of GL2(Qv) such that

{ιA : A ∈ kv} ⊂ Kv.

Assume moreover that Kv = Γv. Then K/Γ is left invariant by Γv, hence for all

A ∈ kv we have ϕk(·A) = ϕιAk = ϕk. In particular, for v = ∞, we may take

kv = O2(R), hence the claim.

Proof. We first prove that ϕ is well-defined. Suppose n1m1k1 = n2m2k2. In

particular k2k
−1
1 = (n2m2)

−1(n1m1) ∈ PK(A) ∩K. Therefore we have

ProjGL2
PK

(m1) = ProjGL2
PK

(n1m1) = ProjGL2
PK

(n2m2k2k
−1
1 ) = ProjGL2

PK
(m2) Proj

GL2
PK

(k2k
−1
1 ).

Then

ω2 ◦ ProjGL1
PK

(m1)ϕk1(Proj
GL2
PK

(m1)) = ω2 ◦ ProjGL1
PK

(m1)ϕk1(Proj
GL2
PK

(m2) Proj
GL2
PK

(k2k
−1
1 ))

= ω2 ◦ ProjGL1
PK

(m1)ω2 ◦ t(k1k−1
2 )ϕk2(Proj

GL2
PK

(m2))

= ω2 ◦ ProjGL1
PK

(m2)ϕk2(Proj
GL2
PK

(m2)).

Next we show that ϕ belongs indeed to IPK
((ω2 ⊗ π)ν)

Γ. The fact that ϕ is invariant

on the left by NK(A)MK(Q)AK
+(R) and on the right by Γ are obvious from the
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definition. The fact that ϕ is square integrable follows from∫
K

∫
AK

+(R)MK(Q)\MK(A)
|ϕ(mk)|2 dm dk =

∫
K

∫
AK

+(R)MK(Q)\MK(A)
|ϕk(Proj

GL2
PK

(m))|2 dm dk

=
∑

k∈K/Γ

Vol(Γ)

∫
R>0 GL2(Q)\GL2(A)

∫
R>0Q×\A×

|ϕk(x)|2 dt dx <∞

since ϕk is square integrable, R>0Q×\A× is compact and K/Γ is finite. Finally, we

need to show that for all g = nmk, the function ϕg : MK(A) → C,m1 7→ ϕ(m1g)

transform under MK(A) on the right according to ω2 ⊗ π. Indeed, for m1 ∈ MK(A)

we have

ϕg(m1) = ϕ(m1nmk) = ϕ(m1nm
−1
1︸ ︷︷ ︸

∈NK(A)

m1mk) = ω2 ◦ ProjGL1
PK

(m)ω2 ◦ ProjGL1
PK

(m1)ϕk(m1)

hence the claim since ϕk ∈ Vπ.

As a last point, we show that IPK
((ω2 ⊗ π)ν)

Γ consists exactly in such functions.

Let ϕ ∈ IPK
((ω2 ⊗ π)ν)

Γ. Define

ϕk(A) = ϕ(ιAk).



4. EISENSTEIN SERIES AND THE SPECTRAL DECOMPOSITION 101

Then it is clear that equation (2.35) holds. As for condition (2), note that if

γ = nγmγ ∈ K ∩ PK(A) then

ϕk(AProjGL2
PK

(γ)) = ϕ(ιAιProjGL2
PK

(γ)
k)

= ϕ

ιA
 1

Proj
GL1
PK

(γ)−1

1

Proj
GL1
PK

(γ)

mγk


= ω2 ◦ ProjGL1

PK
(γ−1)ϕ(ιAn

−1
γ γk)

= ω2 ◦ ProjGL1
PK

(γ−1)ϕ(ιAn
−1
γ ι−1

A︸ ︷︷ ︸
∈NK

ιAγk)

= ω2 ◦ ProjGL1
PK

(γ−1)ϕγk(A).

Finally, by definition of IPK
((ω2 ⊗ π)ν) the function m 7→ ϕ(mk) transforms under

MK(A) on the right according to ω2 ⊗ π, from which follows ϕk transforms according

to π. □

Finally we prove the following

Proposition 2.4.4. Let (π, Vπ) be a representation occuring in the discrete spec-

trum of L2(R>0GL2(Q)\GL2(A)) with central character ω1. IPK
((ω2 ⊗ π)ν) has a

K∞-fixed vector if and only if π has a O2(R)-fixed vector. In this case, IPK
((ω2⊗π)ν)∞

is generic if and only if π∞ is a principal series. Finally if π∞ is a spherical principal

series with spectral parameter s and ν ∈ ia∗PK
then IPK

((ω2 ⊗ π)ν)∞ is a principal

series representation with spectral parameter ν + νK(s), where νK(s) is the element of

a∗(C) corresponding to the character

[
y
1
2

u

y−
1
2

u−1

]
7→ |y|s.
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Proof. The first claim follows immediately from Proposition 2.4.3. By the

spectral decomposition for GL2, if π has a O2(R)-fixed vector then π∞ is either a

character or a principal series. But representations induced from a character of

the Klingen subgroup are not generic, as seen in row IIb of Table A.1 in [RS07].

This shows the second claim. Finally assume π∞ is a spherical principal series on

GL2 with spectral parameter s. Then we might see π∞ as the representation of

PGL2(R) induced from the character χs :

[
y
1
2 x

±y−
1
2

]
7→ |y|s, where s is either an

imaginary number or a real number with 0 < |s| < 1
2
. Define the following subgroups:

N1 = U s2 =

[
1 ∗
1
1
1

]
, A1 =

{[
y
1
2

1

±y−
1
2

1

]
: y ̸= 0

}
, M1 = {ιA : A ∈ PGL2(R)}.

Note that N1NK = U , A1AK(R) = T (R) and M1AK = MK. We might view χs as a

character of A1N1. Since ω2 is trivial on AK(R), inducing in stages, we get

IPK
((ω2 ⊗ π)ν)∞ = Ind

G(R)
PK(R)

(
INK(R) ⊗eν ⊗ π∞

)
= Ind

G(R)
PK(R)

(
INK(R) ⊗eν ⊗ IndM1

A1N1
(χs)

)
= Ind

G(R)
PK(R) Ind

PK(R)
B(R)

(
INK(R) ⊗ IN1 ⊗eν+νK(s)

)
= Ind

G(R)
B(R)(IU ⊗eν+νK(s)).

Since ν ∈ ia∗, by Lemma 5.1 of [Mui09] this representation is irreducible. □

4.3.3. Siegel Eisenstein series.

Characters χ of AS
+(R)AS(Q)\AS(A) that coincide with ω on Z(A) are in one-

to-one correspondence with pairs (ω1, ω2) of characters of R>0Q×\A× satisfying

ω1ω
2
2 = ω, via

χ

([ u
u
tu−1

tu−1

])
= ω1(u)ω2(t).
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For convenience, if A ∈ GL2, define ιA =
[
A

⊤A−1

]
∈ MS .

Lemma 2.4.4. Let χ = (ω1, ω2) with ω1ω
2
2 = ω. The irreducible representations

with central character χ occurring in RMS,disc are twists ω2 ⊗ π, where π occurs in the

discrete spectrum of L2(R>0GL2(Q)\GL2(A)) and has central character ω1.

Proof. Similar as Lemma 2.4.3 with trivial modifications where required. □

Proposition 2.4.5. Let χ = (ω1, ω2) with ω1ω
2
2 = ω. Let (π, Vπ) occur in the

discrete spectrum of L2(R>0GL2(Q)\GL2(A)) with central character ω1. Consider

(ϕk)k∈K/Γ such that

(1) for all k, ϕk ∈ Vπ,

(2) if γ ∈ K ∩ PS(A) then for all k, ϕk(·ProjGL2
PS

(γ)) = ω2 ◦ µ(γ−1)ϕγk.

Then the function on G(A) given for n ∈ NS(A),m ∈ MS(A), k ∈ K by

(2.36) ϕ(nmk) = ω2 ◦ µ(m)ϕk(Proj
GL2
PS

(m))

is well-defined and belongs to IPS
((ω2 ⊗ π)ν)

Γ. Moreover, every function belonging to

IPS
((ω2 ⊗ π)ν)

Γ has this shape.

Remark 2.4.3. Similarly as Remark 2.4.2, condition (2) implies that each ϕk is

right-O2(R)-invariant (and hence must be an adelic Maaß form or a character).

Proof. Same proof as Proposition 2.4.3, with trivial modifications where required.

□



104 CHAPTER 2. KUZNETSOV FORMULA

Proposition 2.4.6. Let (π, Vπ) be a representation occuring in the discrete spec-

trum of L2(R>0GL2(Q)\GL2(A)) with central character ω1. IPS
((ω2 ⊗ π)ν) has a

K∞-fixed vector if and only if π has a O2(R)-fixed vector. In this case, IPS
((ω2⊗π)ν)∞

is generic if and only if π∞ is a principal series. Finally if π∞ is a spherical principal

series with spectral parameter s and ν ∈ ia∗PS
then IPK

((ω2 ⊗ π)ν)∞ is a principal

series representation with spectral parameter ν + νS(s), where νS(s) is the element of

a∗(C) corresponding to the character

 y
1
2 u

y−
1
2 u

y−
1
2 u−1

y
1
2 u−1

 7→ |y|s.

Proof. Same proof as Proposition 2.4.4, with trivial modifications where required.

□

4.4. Spectral expansion of the kernel. We now give (in Corollary 2.4.1)

the spectral expansion of the kernel. This follows directly from work of Arthur

combined with the discussion of Sections 3.3, 3.4 and 4.3. For technical reasons,

we need the absolute convergence of the spectral expansion. This is the content of

Proposition 2.4.8. The automorphic forms involved in the spectral expansion of the

automorphic kernel are precisely those whose Whittaker coefficients will appear in

the relative trace formula. In particular, the non-generic ones will by definition have

a zero contribution to the spectral side of the relative trace formula, even though

they do appear in the spectral expansion of the kernel.

Definition 2.4.2. For each standard parabolic P we choose an orthonormal basis

BP of HP (ω) such that
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(1) if RMP ,disc =
⊕

π π is the decomposition of the restriction of the right regular

representation of MP (A) on the subspace of L2(MP (Q)A+
P (R)\G(A)) that

decompose discretely, then BP =
⋃
πBπ, where each Bπ is a basis of the

space of the corresponding induced representation IP (πν), (note that this

space does not depend on ν).

(2) for each representation π =
⊗

v πv as above, for each place v there is

an orthonormal basis Bπ,v of the local representation πv such that Bπ

consists of factorizable vectors ϕ =
⊗

v≤∞ ϕv where each ϕv belongs to the

corresponding Bπ,v.

(3) for each representation πv, we have Bπ,v =
⋃
τ Bπ,v,τ , where the union is

over the irreducible representations τ of Γv, and Bπ,v,τ is a basis of the space

of πv consisting of vectors ϕ satisfying πv(γ)ϕ = τ(γ)ϕ for all γ ∈ Γv.

Note that conditions (2) and (3) imply in particular that elements of BP are

in H 0
P .

Definition 2.4.3. For each standard parabolic P and for each irreducible repre-

sentation π occurring in RMP ,disc, define Bπ,1 to be the subset of Bπ consisting in

vectors ϕ whose each local component ϕv belongs to Bπ,v,1, and set BΓ
P =

⋃
πBπ,1.

If χ is a character of AP (A), define

GP (Γ, χ) =
⋃
π

Bπ,1,

where the union runs over representations π with central character χ and such that

the induced representations IP (πν) are generic.
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If u ∈ HP (ω), define

IP (ν, f)u =

∫
G(A)

f(y)IP (ν, y)u dy.

Proposition 2.4.7. Let ν ∈ ia∗P . Let u ∈ BP . Then either IP (ν, f)u = 0 or

u ∈ BΓ
P . In the latter case, say u ∈ Bπ. Then if π is generic we have

IP (ν, f)u = λf (u, ν)u,

where λf (u, ν) = λf∞(u, ν)λffin(u, ν), and

λf∞(u, ν) =



f̃∞(ν) if P = B,

f̃∞(ν + νK(su)) if P = PK and π∞ has spectral parameter su,

f̃∞(ν + νS(su)) if P = PS and π∞ has spectral parameter su,

f̃∞(νu) if P = G and π∞ has spectral parameter νu,

and, following notations of Proposition 2.3.3, λffin(u, ν) is the eigenvalue of the Hecke

operator ⊗
Γp=G(Zp)

πp,ν(f̃p).

Remark 2.4.4. If P = G then aP = {0} and IP (ν, f) = R(f).

Proof. This is a combination of Propositions 2.3.3, 2.3.5, Lemma 2.4.2 and

Propositions 2.4.4 and 2.4.6. □

The following statement [Art78, pages 928-935] may be viewed as a rigorous

version of the informal discussion in Section 3.2.
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Lemma 2.4.5. Let f as in Assumption 2.1. Then for x, y ∈ G(A) we have a

pointwise equality

Kf (x, y) =
∑
P

n−1
P

∫
ia∗P

∑
u∈BP

E(x,IP (ν, f)u, ν)E(y, u, ν) dν.

Here, nG = 1, nB = 8, nPK
= 2 and nPS

= 2.

However, for the later purpose of interchanging integration order, we want to show

that the above expressions for the kernel converge absolutely. To this end, we need

the following stronger statement.

Proposition 2.4.8. Let f as in Assumption 2.1. Then the following expression

defines a continuous function in the variables x ∈ G(A) and y ∈ G(A), which is

moreover bounded on any compact subset of (G(Q)\G(A))2:

Kabs(x, y) =
∑
P

n−1
P

∫
ia∗P

∑
u∈BP

|E(x,IP (ν, f)u, ν)E(y, u, ν)| dν.

We do not give a proof of this proposition here, as a similar statement was

proven in the setting of GL2 in § 6 of [KL13], the proof thereof can be directly

adapted. For completeness, we include a proof in Appendix A. By combining it with

Lemmas 2.4.2, 2.4.3, 2.4.5 and Proposition 2.4.7, we obtain the following corollary.

Corollary 2.4.1. Let f as in Assumption 2.1. Then for x, y ∈ G(A) we have a

pointwise equality

Kf (x, y) = Kdisc(x, y) +KB(x, y) +KK(x, y) +KS(x, y) +Kng(x, y),
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where

Kdisc(x, y) =
∑

u∈G(Γ,ω)

f̃∞(νu)λffin(u)u(x)u(y),

KB(x, y) =
1

8

∑
ω1ω2ω2

3=ω

∑
u∈GB(Γ,ω1,ω2,ω3)

∫
ia∗
f̃∞(ν)λffin(u, ν)E(x, u, ν)E(y, u, ν) dν,

KK(x, y) =
1

2

∑
ω1ω2=ω

∑
u∈GPK

(Γ,ω1,ω2)

∫
ia∗K

f̃∞(ν + νK(su))λffin(u, ν)E(x, u, ν)E(y, u, ν) dν,

KS(x, y) =
1

2

∑
ω1ω2

2=ω

∑
u∈GPS

(Γ,ω1,ω2)

∫
ia∗S

f̃∞(ν + νS(su))λffin(u, ν)E(x, u, ν)E(y, u, ν) dν,

and all the automorphic forms involved in Kng are not generic.

Actually, no automorphic form from the residual spectrum is generic, as shown by

the following lemma. Thus Kdisc consists only in elements from the cuspidal spectrum.

Lemma 2.4.6. Let (π, Vπ) be any irreducible representation occurring in the residual

spectrum of L2(Z(R)G(Q)\G(A), ω). Then π is non-generic.

Proof. We will rely on results of Kim that describe the residual spectrum of Sp4.

Thus we first need to show that the representation res π given by Definition 2.3.1

belongs to the residual spectrum of Sp4(A). First, resπ occurs in the discrete spectrum

of L2(Sp4(Q)\ Sp4(A)), because there are only finitely many possibilities for the

Archimedean component of any irreducible representation occurring in res π. Moreover

res π is not cuspidal by Lemma 2.3.2. Hence res π belongs to the residual spectrum

of Sp4(A), as claimed. In view of Lemma 2.3.1, it suffices to prove that the residual

spectrum of Sp4(A) is not generic. By Theorem 3.3 and Remark 3.2 of [Kim95],

the representations occurring from poles of Siegel Eisenstein series are non-generic.
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Similarly, by Theorem 4.1 and Remark 4.2 of [Kim95], the representations occurring

from poles of Klingen Eisenstein series are non-generic. Finally, by [Kim95] § 5.3,

irreducible representations π occurring from the poles of Borel Eisenstein series are

described as follows. On the one hand, we have the space of constant functions,

which is clearly not generic. On the other hand, for every non-trivial quadratic

grössencharacter µ of Q we have a representation B(µ) whose local components are

irreducible subquotients of the induced representation Ind
Sp4
B (| · |vµv × µv). Therefore,

in the terminology of [RS07, § 2.2], for all prime p, πp belongs to Group V if µp ̸= 1,

and to Group VI if µp = 1. Now by Table A.2 of [RS07], we see that the only generic

representations in Group V and VI are those from Va and VIa. But Table A.12 shows

that neither of these have a Kp-fixed vector. Since almost all πp contain a Kp-fixed

vector, at least one local component of π must be non-generic, and thus π is not

globally generic. □

4.5. The spectral side of the trace formula. Let ψ1 = ψm1 , ψ2 = ψm2 be

generic characters of U(A)/U(Q). Fix t1, t2 ∈ A+ and consider the basic integral

(2.37) I =

∫
(U(Q)\U(A))2

Kf (xt1, yt2)ψm1(x)ψm2(y) dx dy.

Our goal is to compute it in two different ways – using the spectral decomposition

of the kernel Kf on the one hand, and its expression as a series together with the

Bruhat decomposition on the other hand. The latter will constitute the geometric

side and will be addressed in Section 5. We now focus on the former. Using the

spectral expansion of the kernel Kf given by Lemma (2.4.5), we can evaluate the
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basic integral (2.37) as∫
(U(Q)\U(A))2

∑
P

n−1
P

∫
ia∗P

∑
u∈BP

E(xt1,IP (ν, f)u, ν)E(yt2, u, ν) dν ψm1(x)ψm2(y) dx dy.

By Proposition 2.4.8, this expression is absolutely integrable since (U(Q)\U(A))2 is

compact. Thus we may interchange integration order, thus obtaining the Whittaker

coefficients of the automorphic forms involved here. By Corollary 2.4.1, we get a

discrete contribution and a residual contribution, and a continuous contribution –

which itself splits into the contribution of the various parabolic classes. Thus the

spectral side of the Kuznetsov formula is given as follows.

Proposition 2.4.9. We have I = 1
(m11m21)4|m12m21|3 (Σdisc + ΣB + ΣK + ΣS), where

Σdisc =
∑

u∈G(Γ,ω)

f̃∞(νu)λffin(u)Wψ(u)(t1t
−1
m1

)Wψ(u)(t2t
−1
m2

),

ΣB =
1

8

∑
ω1ω2ω2

3=ω

∑
u∈GB(Γ,ω1,ω2,ω3)

∫
ia∗
f̃∞(ν)λffin(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν,

ΣK =
1

2

∑
ω1ω2=ω

∑
u∈GPK

(Γ,ω1,ω2)

∫
ia∗K

f̃∞(ν + νK(su))λffin(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν,



5. THE GEOMETRIC SIDE OF THE TRACE FORMULA 111

ΣS =
1

2

∑
ω1ω2

2=ω

∑
u∈GPS

(Γ,ω1,ω2)

∫
ia∗S

f̃∞(ν + νS(su))λffin(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν.

5. The geometric side of the trace formula

We now return to computing the basic integral (2.37) using the Bruhat decompo-

sition. The resulting expression will constitute the geometric side of the relative trace

formula. Similarly as in Section 3, we first work globally before switching to a local

framework. The Weyl group of GSp4 has eight elements. However, as we show in

subsection 5.1 below, only the identity element and the longest three elements have a

non-zero contribution. In subsection 5.2 we then obtain a “uniform” expression for

the (global) relevant orbital integrals. In subsection 5.3, we use the integral trans-

form that was discussed in § 3.4.5 to express the Archimedean part of the relevant

orbital integrals in terms of on integral over a∗ of the test function occurring on the

spectral side of the relative trace formula. However, this integral will appear “inside”

another integral over a certain subgroup Uσ(R). Conjecturally, we can interchange

integration order and replace the integral over Uσ(R) with some generalised Bessel

functions. However, we will not need this conjecture in our application in Chapter 3.

In subsection 5.4, we eventually specialise the congruence subgroup Γ to be the

Borel congruence subgroup, which allows us to give an explicit expression for the

finite part of the relevant orbital integrals. As expected, the identity contribution is

(at least under some simplifying hypothesis) a delta symbol, while the other three
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contributions give sums of various kinds of generalised Kloosterman sums for which

we give explicit expressions.

Breaking the sum (2.9) over U(Q)×U(Q) orbits leads to a sum over representatives

of the double cosets of U\G/U of orbital integrals. Specifically, set H = U × U ,

acting on G by

(x, y) · δ = x−1δy,

and denote by Hδ the stabilizer of δ. Since f has compact support, the infinite sum∑
δ∈G(Q) |f(t

−1
1 x−1δyt2)| is in fact locally finite and hence defines a continuous function

in x and y on the compact set H(Q)\H(A). Thus we may interchange summation

and integration order, getting

I =

∫
H(Q)\H(A)

∑
δ∈G(Q)

f(t−1
1 x−1δyt2)ψm1(x)ψm2(y) dx dy

=
∑

δ∈G(Q)

∫
H(Q)\H(A)

f(t−1
1 x−1δyt2)ψm1(x)ψm2(y) dx dy

=
∑

δ∈U(Q)\G(Q)/U(Q)

Iδ(f),

where

(2.38) Iδ(f) =

∫
Hδ(Q)\H(A)

f(t−1
1 x−1δyt2)ψm1(x)ψm2(y) d(x, y),

and d(x, y) is the quotient measure on Hδ(Q)\H(A). Using the Bruhat decomposition

G = BΩB =
∐

σ∈Ω UσTU , we have

(2.39) U\G/U =
∐
σ∈Ω

σT ,



5. THE GEOMETRIC SIDE OF THE TRACE FORMULA 113

where T = T/Z. We can then compute separately the contribution from each element

from the Weyl group. Writing H(A) = Hδ(A)× (Hδ(A)\H(A)), we can factor out

the integral of ψm1 ⊗ψm2 over the compact group Hδ(Q)\Hδ(A) in (2.38). Therefore,

Iδ(f) vanishes unless the character ψm1 ⊗ψm2 is trivial on Hδ(A). Following Knightly

and Li (and Jacquet), we shall call the orbits H · δ such that ψm1 ⊗ ψm2 is trivial on

Hδ(A) relevant.

5.1. Relevant orbits. In order to characterize the relevant orbits, let us in-

troduce a bit of notation. A set of representatives of T (Q)/Z(Q) is given by the

elements

(2.40) δ1
.
=

[
d1

1
d2

d1d2

]
, d1, d2 ∈ Q×.

For each σ ∈ Ω, the corresponding set of representatives of σT (Q) in (2.39) is given

by elements of the form

(2.41) δσ = σδ1,

and Hδσ(A) consists of pairs (u, δ−1
σ uδσ) = (u, δ−1

1 σ−1uδ1σ) such that both component

lie in U(A). Since conjugation by δ1 preserves U(A), the condition that the second

component lies in U(A) is equivalent to u ∈ U(A) and σ−1uσ ∈ U(A), and hence

u ∈ Uσ(A). We accordingly make the following definition.

Definition 2.5.1. For σ ∈ Ω, define

(2.42) Dσ(A) = Uσ(A)× σ−1Uσ(A)σ.
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Then we have

(2.43) Hδσ(A) = {(u, δ−1
σ uδσ) : u ∈ Uσ(A)} ⊂ Dσ(A).

Lemma 2.5.1. The relevant orbits are the ones corresponding to the following

elements:

• σ = 1 with δ1 = tm2
−1tm1 =


m11
m21

1
m11m12
m21m22

m2
11m12

m2
21m22

,
• σ = s1s2s1 with δ1 satisfying d1m12 = d2m22,

• σ = s2s1s2 with δ1 satisfying m11 = −d1m21,

• σ = s1s2s1s2 = J with no condition on δ1.

Proof. For each representative δσ as in (2.41), let us fix u1 ∈ Uσ(A), and compute

δ−1
σ u1δσ in order to determine under which condition ψm1 ⊗ ψm2 is trivial on Hδσ(A).

For σ = 1, we have Uσ = U , hence we may take u1 =

[
1 c a−cx
x 1 a b

1 −x
1

]
. Then we have

δ−1u1δ =

[
1 c

d2
d1

(a−cx)d2
xd1 1 ad2 bd1d2

1 −xd1
1

]
. Thus, by (2.5), the condition that ψm1 ⊗ ψm2 be trivial

on Hδ1(A) is equivalent to δ1 = tm2
−1tm1 .

For σ = s1, we have Uσ(A) =

{[
1 c a
1 a b
1
1

]
: a, b, c ∈ A

}
, and if u1 =

[
1 c a
1 a b
1
1

]
,

then δ−1u1δ =

[
1 b

d2
d1

ad2

1 ad2 cd1d2
1

1

]
, hence the condition that ψm1 ⊗ ψm2 be trivial on

Hδs1
(A) is equivalent to θ

(
m12c−m22

d2
d1
b
)
= 1 for all b, c ∈ A, which is equivalent

to m12 = m22 = 0 and thus contradicts the fact that ψm1 and ψm2 are generic.

Similar calculations show that σ = s2, s1s2 and s2s1 yield no relevant orbit.
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For σ = s1s2s1 we have Uσ(A) =
{[

1 c
1
1
1

]
: c ∈ A

}
, and if u1 =

[
1 c
1
1
1

]
then

we have δ−1u1δ =

[
1 c

d2
d1

1
1

1

]
, hence the condition that ψm1 ⊗ ψm2 be trivial on

Hδs121
(A) is equivalent to θ

((
m12 −m22

d2
d1

)
c
)
= 1 for all c ∈ A. This is equivalent

to d1m12 = d2m22.

The calculation for σ = s2s1s2 is similar. Finally, for σ = s1s2s1s2 = J the long

Weyl element, Hδs1212
(A) is trivial. □

A case by case calculation also shows the following.

Lemma 2.5.2. Let σ ∈ Ω. Then there exists δ ∈ T (Q) such that the orbit of

δσ = σδ is relevant if and only if Uσ = {u ∈ U : σ−1uσ = u}.

In the sequel, we shall call such elements of the Weyl group relevant as well. In

particular, by definition of the relevant orbits, and by (2.43), we have the following.

Corollary 2.5.1. Suppose that the orbit of δσ = σδ is relevant. Then for all

u ∈ Uσ we have ψm2(δ
−1uδ) = ψm1(u).

5.2. General shape of the relevant orbital integrals. In this subsection

we a uniform parameterization of the relevant orbits. We thus obtain a “uniform

expression” for the relevant orbital integrals. In particular, this expression shows that

the (global) relevant orbital integrals factor as a product of local orbital integrals, and

thus can be analysed locally, which will be the object of the subsequent subsections.
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Lemma 2.5.3. For each δ1 ∈ T (Q) and σ ∈ Ω, the map

φ : Dσ(A) → Dσ(A)

(u1, u2) 7→ (u1, δ
−1
σ u−1

1 δσu2)

induces a bijective map

Hδσ(Q)\Dσ(A) → (Uσ(Q)× {1}) \Dσ(A)

∼= (Uσ(Q)\Uσ(A))×
(
σ−1Uσ(A)σ

)
preserving the quotient measures.

Proof. To prove φ is well defined it is sufficient to prove that for any (u1, u2) ∈

Uσ(A)× σ−1Uσ(A) we have φ2(u1, u2) = δ−1
σ u−1

1 δσu2 ∈ σ−1Uσ(A). This is equivalent

to the condition σφ2(u1, u2)σ
−1 ∈ Uσ(A), which in turn is equivalent to
σφ2(u1, u2)σ

−1 ∈ U(A)

φ2(u1, u2) ∈ U(A).

But φ2(u1, u2) = δ−1
1 σ−1u−1

1 σδ1u2, and since u1 ∈ Uσ(A), we have σ−1u−1
1 σ ∈ U(A)

and it follows φ2(u1, u2) ∈ U(A) as desired. On the other hand,

σφ2(u1, u2)σ
−1 = σδ−1

1 σ−1u−1
1 σδ1u2σ

−1

= (σδ1σ
−1)−1u−1

1 (σδ1σ
−1)σu2σ

−1.

By definition of the Weyl group, σδ1σ
−1 ∈ T (A) so (σδ1σ

−1)−1u−1
1 (σδ1σ

−1) ∈ U(A).

Furthermore, σu2σ
−1 ∈ Uσ(A) ⊂ U(A) and it also follows that σφ2(u1, u2)σ

−1 ∈ U(A).
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Next, for h = (h1, h2) ∈ Hδσ(Q), we clearly have φ(h) = (h1, 1), and

φ(h(u1, u2)) = (h1u1, δ
−1
σ u−1

1 h−1
1 δσh2︸ ︷︷ ︸
=δσ

u2)

= φ(h)φ(u1, u2).

Finally if we define ψ(u1, u2) = (u−1
1 , u2), then ψ ◦φ is an involution, and in particular

φ is bijective, which establishes the lemma. □

Corollary 2.5.2. Let δ1 ∈ T (Q) and σ be a relevant element of the Weyl group.

We have a measure preserving map

φ : Hδσ(Q)\H(A) → (Uσ(Q)\Uσ(A))× (Uσ(A)\U(A))× U(A)

(x, y) 7→ (Uσ(Q)u1, Uσ(A)u2, u3)

with u1u2 = x and u3 = δ−1
σ u−1

1 δσy.

Remark 2.5.1. The assumption that σ is relevant is not really needed here, but it

simplifies slightly the proof.

Proof. The quotient Uσ\U may be identified with Uσ, and the map Uσ ×

Uσ, (uσ, u1) 7→ uσu1 preserves the Haar measures. Define Dσ = Uσ × Uσ. Using that

σ is relevant and hence, by Lemma 2.5.2, that Dσ(A) = Uσ(A)× Uσ(A), we obtain a

measure preserving map

Hδσ(Q)\H(A) → (Hδσ(Q)\Dσ(A))×Dσ

Hδσ(Q)(x, y) 7→ (Hδσ(Q)(xσ, yσ), (x1, y1)).
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Composing the first coordinate with the map obtained in Lemma 2.5.3, we get a

measure preserving map

Hδσ(Q)\H(A) → ((Uσ(Q)× {1}) \Dσ(A))×Dσ

Hδσ(Q)(x, y) 7→
(
(Uσ(Q)× {1}) (xσ, δ−1

σ x−1
σ δσyσ), (x1, y1)

)
.

Finally, composing with Uσ(A)× Uσ → U(A), (yσ, y1) 7→ yσy1 we obtain

Hδσ(Q)\H(A) → (Uσ(Q)\Uσ(A))× Uσ(A)× U(A)

Hδσ(Q)(x, y) 7→
(
Uσ(Q)xσ, x1, δ

−1
σ x−1

σ δσy
)
.

□

Proposition 2.5.1. Let H · δσ be a relevant orbit. Then the integral (2.38) can

be expressed as

(2.44) Iδσ(f) =

∫
Uσ(A)\U(A)

∫
U(A)

f(t−1
1 uδσu1t2)ψm1(u)ψm2(u1) du du1.

Moreover, it factors as Iδσ(f) = Iδσ(f∞)Iδσ(ffin), where we have set ffin =
∏

p fp.

Remark 2.5.2. Note that the integral is well-defined by Corollary 2.5.1.

Remark 2.5.3. By Assumption 2.1, the support of f∞ is included in G◦(R) =

{g ∈ G(R), µ(g) > 0}. Therefore, if δ1 =

[
d1

1
d2

d1d2

]
, we have Iδσ(f∞) ̸= 0 only if

d1d2 > 0.
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Proof. By Corollary 2.5.2 we can make the change of variable (u1, u2, u3) = φ(x, y)

in (2.38). So we get

Iδ(f) =

∫
Uσ(Q)\Uσ(A)

∫
Uσ(A)\U(A)

∫
U(A)

f(t−1
1 u−1

2 δσu3t2))

×ψm1(u1u2)ψm2(δ
−1
σ u1δσu3) du3 du2 du1.

(2.45)

We have

ψm1(u1u2)ψm2(δ
−1
σ u1δσu3) = ψm1(u2)ψm1(u1)ψm2(δ

−1
σ u1δσ)ψm2(u3)

= ψm1(u2)ψm2(u3)

since (u1, δ
−1
σ u1δσ) ∈ Hδ(A) and we assume H · δσ is relevant orbit. Reporting this

equality in (2.45), we get

Iδσ(f) =

∫
Uσ(A)\U(A)

∫
U(A)

f(t−1
1 u−1

2 δσu3t2)ψm1(u2)ψm2(u3) du3 du2.

Write u3 = uσu1 with uσ ∈ Uσ and u1 ∈ Uσ\U . Then by Lemma 2.5.2 we have

u−1
2 δσu3 = u−1

2 σδuσu1 = u−1
2 σδuσδ

−1δu1 = u−1
2 δuσδ

−1σδu1,

and by Corollary 2.5.1 we have

ψm1(u2)ψm2(u3) = ψm1(u2)ψm2(uσu1)

= ψm1(u2)ψm1(δuσδ
−1)ψm2(u1) = ψm1(δu

−1
σ δ−1u2)ψm2(u1).

Setting u = δu−1
σ δ−1u2 we get the result. □
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5.3. The Archimedean orbital integrals. In this subsection we use the

integral transform that was discussed in § 3.4.5 to express the Archimedean part of

the relevant orbital integrals in terms of spherical transform f̃∞ occurring on the

spectral side of the relative trace formula. Moreover, under a conjectural interchange

of integral (due to Buttcane), we obtain a neater expression involving the quantity

f̃∞(−iν)W (iν, t1t
−1
m1
, ψ1)W (−iν, t2t−1

m2
, ψ1) occurring in the spectral side of the relative

trace formula, together with some generalised Bessel functions Kσ(−iν, ·, ψ1).

By Theorem 2.3.4 and using (2.28) we have the following

Lemma 2.5.4. Let H · δσ be a relevant orbit. Then the corresponding Archimedean

orbital integral Iδσ(f∞) is given by the following expression

1

c

∆σ(tm2)

|m4
11m

3
12|

∫
Uσ(R)\U(R)

∫
a∗
f̃∞(−iν)W (iν, t−1

m1
t1, ψ1)

×W (−iν, t−1
m1
δσtm2u1t

−1
m2

t2, ψ1)
dν

c(iν)c(−iν)
ψ1(u1) du1,

where the constant c is the one appearing in the spherical inversion theorem and ∆σ

is the modulus character of the group Uσ(R)\U(R).

Note that the above integral is well-defined. More generally, let ψ be a generic

character, let σ be a relevant element of the Weyl group and let g : ia∗ → C be a

measurable function. Then by Lemma 2.5.2, for all t ∈ G(R) the integral∫
Uσ(R)\U(R)

∫
a∗
g(−iν)W (−iν, yσu1t, ψ) dν ψ(u1) du1
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is well defined as long as for all u ∈ Uσ(R) the commutator yuy−1u−1 belongs to

U0(R) =
{[

1 a
1 a b
1
1

]
, a, b ∈ R

}
. The following conjecture due to Buttcane [But20a],

if true, will enable us to take the a∗ integral out in Lemma 2.5.4.

Conjecture 2.5.1 (Interchange of integral). Let g be holomorphic with rapid

decay on an open tube domain of a∗C containing a∗, and let t ∈ G(R). Let ψ be a

generic character, and let σ be a relevant element of the Weyl group. Then for almost

all y ∈ Sp4(R) satisfying yuy−1u−1 ∈ U0(R) for all u ∈ Uσ(R) we have∫
Uσ(R)\U(R)

∫
a∗
g(−iν)W (−iν, yσu1t, ψ) dν ψ(u1) du1 =

∫
a∗
g(−iν)K̃σ(−iν, y, t) dν

where

K̃σ(−iν, y, t) = lim
R→0

∫
Uσ(R)\U(R)

h

(
∥u1∥
R

)
W (−iν, yσu1t, ψ)ψ(u1) du1,

for some fixed, smooth, compactly supported h with h(0) = 1. Moreover K̃σ is entire

in ν and smooth and polynomially bounded in t and y for ℜ(−iν) in some fixed

compact set.

Note that Conjecture 2.5.1 is not needed for σ = 1 since in this case we have

Uσ = U and hence K̃σ(−iν, y, t) = W (−iν, yσt, ψ). Consider now the case of σ = J

the long Weyl element. In this case Uσ is trivial. Let u ∈ U(R) and k ∈ K∞. Then

changing variables and using the fact that the map GSp4(R) → C : g 7→ W (−iν, yg, ψ)

is right-K∞ invariant we have for all u ∈ U(R), t ∈ T (R) and k ∈ K∞

(2.46) K̃σ(−iν, y, utk) = ψ(u)K̃σ(−iν, y, t).
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Moreover K̃σ(−iν, y, ·) is an eigenfunction of the centre of the universal enveloping

algebra in each variable, with eigenvalue matching those of W (−iν, ·, ψ). It follows

from the uniqueness of the Whittaker model that

K̃σ(−iν, y, t) = Kσ(−iν, y, ψ)W (−iν, t, ψ)

for some function Kσ(−iν, y, ψ) that we call the long Weyl element Bessel function.

Kσ(−iν, ·, ψ) is itself an eigenfunction of the centre of the universal enveloping algebra

with eigenvalue matching those of W (−iν, ·, ψ), and satisfies for all u ∈ U(R) the

transformation rule

(2.47) Kσ(−iν, uy, ψ) = ψ(u)Kσ(−iν, y, ψ) = Kσ(−iν, yσuσ−1, ψ).

For the remaining two relevant elements of the Weyl group K̃σ(−iν, y, ·) still satisfies

relation (2.46) for all u ∈ U(R). Thus there is still a factorisation K̃σ(−iν, y, t) =

Kσ(−iν, y, ψ)W (−iν, t, ψ) for appropriate y, where Kσ(−iν, y, ψ) is defined to be the

σ-Bessel function. However because of the restriction on y, the conditions satisfied

by Kσ(−iν, y, ψ) are more complicated.

Buttcane has announced a proof for Conjecture 2.5.1 in a more general context, but

as far as we are aware the proof is not publicly available yet. Assuming Conjecture 2.5.1

yields a uniform expression for the Archimedean integrals attached to the various

elements of the Weyl group.
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Proposition 2.5.2. Assume Conjecture 2.5.1. Let H · δσ be a relevant orbit.

Then the corresponding Archimedean orbital integral is given by

Iδσ(f∞) =
1

c

∆σ(tm2)

|m4
11m

3
12|

∫
a∗
f̃∞(−iν)Kσ(−iν, t−1

m1
σδtm2σ

−1, ψ1)

×W (iν, t−1
m1

t1, ψ1)W (−iν, t−1
m2

t2, ψ1)
dν

c(iν)c(−iν)

where the constant c is the one appearing in the spherical inversion theorem and ∆σ

is the modular character of the group Uσ(R)\U(R).

Proof. We apply the statement of Conjecture 2.5.1 to the integral in Lemma 2.5.4

for the function defined by

g(−iν) = 1

c(iν)c(−iν)
f̃∞(−iν)W (iν, t−1

m1
t1, ψm1),

which has rapid decay by the rapid decay of f̃∞ (Theorem 2.3.1), the explicit expres-

sion (2.22) for the spectral measure, and the estimate for the Whittaker function in

the spectral aspect given by Proposition 2.3.6. □

5.4. Symplectic Kloosterman sums. In this subsection, the non-Archimedean

part of the orbital integrals is computed when the finite part of the test function

satisfies the following.

Assumption 2.3. Recall from Assumption 2.1 that we assume f = f∞
∏

p fp

has central character ω. We now further assume that there are two coprime positive

integers N and n such that ω is trivial on (1 + N Ẑ) ∩ Ẑ×, and the function ffin is
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supported on Z(Afin)M(n, N) and satisfies

ffin(zm) =
1

Vol(B1(N))
ω(z)

for z ∈ Z(Afin) and m ∈M(n, N), where

M(n, N) =
{
g ∈ G(Afin) ∩Mat4(Ẑ) : g ≡

[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N,µ(g) ∈ n Ẑ×

}
,

and

B1(N) =
{
g ∈ G(Ẑ) : g ≡

[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N

}
.

Remark 2.5.4. With this choice, f =
⊗

p fp, and each fp is left and right Γp-

invariant, where

Γp = Γp(N) = {g ∈ G(Zp) : g ≡
[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N}.

In particular, if x, c ∈ Zp then Γp contains the matrix

[
1 c −cx
x 1

1 −x
1

]
. Thus if ϕ is

right-Γp-invariant for all prime p, changing variables u 7→ u

[
1 c −cx
x 1

1 −x
1

]
in the integral

expression of the ψm-Whittaker coefficient of ϕ, we get

Wψm(ϕ)(g) = θ(m1x+m2c)Wψm(ϕ)(g)

for all g. Therefore Wψm(ϕ) = 0 unless m1 and m2 are integers. Henceforth, we shall

assume m1 and m2 are two pairs of integers.

Remark 2.5.5. Note that Γ = K∞
∏

p Γp(N) is contained both in the Borel, Klin-

gen, Siegel, and paramodular congruence subgroup of level N , thus any automorphic

form that is fixed by one of these groups is also fixed by Γ, and hence will appear in
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our formula. One could fix a different choice of congruence subgroup, and accordingly

define different types of Kloosterman sums.

Under Assumption 2.3, the element δ1 in Lemma 2.5.1 must satisfy more conditions

in order for the corresponding orbital integral to be non-zero.

Lemma 2.5.5. Let σ ∈ Ω, δ1 =

[
d1

1
d2

d1d2

]
such that the orbit of δσ = σδ1 is

relevant. Assume Iδσ(ffin) ̸= 0. Then there is an integer s such that d1d2 = ± n
s2
.

Proof. For all u ∈ U(A) and u1 ∈ Uσ(A)\U(A) we have µ(uδσu1) = d1d2. So by

Assumption 2.3, uδσu1 belongs to the support of f only if d1d2 ∈ A2
finẐ× n. Since d1d2

is a rational number, there must be a rational number s such that d1d2 = ± n
s2
. But

the second diagonal entry of sσ−1uδσu1 is s therefore s must belong to Ẑ, hence s is

an integer. □

Henceforth, we shall assume δ is as in Lemma 2.5.5. By Remark 2.5.3, we could

also assume that d1d2 > 0 (which would then fix the sign in the equality d1d2 = ± n
s2

above). However, we do not need doing so for now, and we shall not, in view of

possible applications with a different choice of test function at the Archimedean place.

Remark 2.5.6. Consider the case N = n = 1. Then

M(n, N) = GSp4(Ẑ) =
∏
p

GSp4(Zp).

For simplicity, set η = δσ, and if p is a prime and x ∈ G(A), write xp for the

p-th component of x. Also write ψp,1 and ψp,2 for the local p-th components of the

characters ψm1 and ψm2, respectively. In particular, these characters are trivial on
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U(Zp). Then we have

Iδσ(ffin) =
1

Vol(B1(N))

∫
Uσ(Afin)\U(Afin)

∫
U(Afin)

1GSp4(Ẑ)
(suηv)ψm1(u)ψm2(v) du dv

=
∏
p

1

Vol(Γp(N))

∫
Uσ(Qp)\U(Qp)

∫
U(Qp)

1GSp4(Zp)(spupηpvp)ψp,1(up)ψp,2(vp) dup dvp.

For all but finitely many primes p, the entries of spηp are in Z×
p . For those primes, by

the explicit Bruhat decomposition (see Lemma 2.5.7 below), the condition spupηpvp ∈

GSp4(Zp) is equivalent to up ∈ U(Zp) and vp ∈ Uσ(Zp)\U(Zp), and hence∫
Uσ(Qp)\U(Qp)

∫
U(Qp)

1GSp4(Zp)(spupηpvp)ψp,1(up)ψp,2(vp) dup dvp = 1.

For the remaining primes p, noticing that Uσ(Qp)\U(Qp) may be identified with the

subgroup Uσ(Qp) = U(Qp) ∩ σ⊤U(Qp)σ
−1, the local integral equals the Kloosterman

sum Kl(η, ψp,1, ψp,2) as defined in [SHM20] when η ∈ Sp4(Qp) (note that we denote

here by Uσ what is denoted there by Uσ−1, and conversely).

We now treat separately the contribution from each relevant element of the Weyl

group from a global point of view. To alleviate notations, we shall not include N and

ω in the argument of the Kloosterman sums we proceed to define.

5.4.1. The identity contribution.
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Definition 2.5.2. Let a, b, d,N be integers such that d | N . Then the following

sum is well-defined

S(a, b, d,N) =
∑

x,y∈Z/NZ
d|xy

e

(
ax+ by

N

)
.

Lemma 2.5.6. Let a, b, d,N be integers such that d | N . Write a =
∏

i p
ai
i , where

pi are distinct primes and ai are integers, and similarly for b, d,N . Then we have

S(a, b, d,N) =
∏
i

S(paii , p
bi
i , p

di
i , p

Ni
i ).

Moreover if n is a positive integer, i, j, k are non-negative integers with k ≤ n and p

is a prime, then we have

S(pi, pj, pk, pn) = p2n−k(1− p−1)max(0, k + 1−max(0, n− i)−max(0, n− j))

+ p2n−k−1

1i≥n
j≥n

− 1 i<n
j<n

i+j≥2n−k−1

 .

In particular, it follows that S(pi, pj, pk, pn) is non-zero only if

(2.48) (n− i) + (n− j) ≤ k + 1.

Proof. The factorization is immediate from the Chinese remainder theorem.

Now let us evaluate S = S(pi, pj, pk, pn). We have (here, abusing notation slightly,

we set vp(0) = n)

S =
k∑

h=0

∑
x∈Z/pnZ
vp(x)=h

e

(
pix

pn

) ∑
y∈Z/pnZ
vp(y)≥k−h

e

(
pjy

pn

)
+

∑
x∈Z/pnZ
vp(x)≥k+1

e

(
pix

pn

) ∑
y∈Z/pnZ

e

(
pjy

pn

)
.
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Now if ℓ is any non-negative integer, we have

∑
y∈Z/pnZ
vp(y)≥ℓ

e

(
pjy

pn

)
=


pn−ℓ if j + ℓ ≥ n and ℓ ≤ n

0 otherwise.

Hence

S =

k−max(0,n−j)∑
h=0

pn−k+h
∑

x∈Z/pnZ
vp(x)=h

e

(
pix

pn

)
+ p2n−k−1

1 j≥n
i+k+1≥n
k<n

.

Now ∑
x∈Z/pnZ
vp(x)=h

e

(
pix

pn

)
=

∑
x∈Z/pnZ
vp(x)≥h

e

(
pix

pn

)
−

∑
x∈Z/pnZ
vp(x)≥h+1

e

(
pix

pn

)
,

hence the h-sum becomes

k−max(0,n−j)∑
h=max(0,n−i)

p2n−k(1− p−1)

− p2n−k−1
10≤n−i−1≤k−max(0,n−j) + p2n−k−1

1k−max(0,n−j)=n,

so

S = p2n−k(1− p−1)max(0, k + 1−max(0, n− i)−max(0, n− j))

+p2n−k−1(1 j≥n
i+k+1≥n
k<n

− 10≤n−i−1≤k−max(0,n−j) + 1k−max(0,n−j)=n).

Finally, it can be checked by inspection of cases that

1 j≥n
i+k+1≥n
k<n

− 10≤n−i−1≤k−max(0,n−j) + 1k−max(0,n−j)=n = 1i≥n
j≥n

− 1 i<n
j<n

i+j≥2n−k−1

.

□
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Proposition 2.5.3. Let σ = 1, δ1 =

[
d1

1
d2

d1d2

]
with d1d2 = ± n

s2
for some

integer s. Then Iδσ(ffin) = 0 unless all of the following hold:

(1) s divides n,

(2) d1 =
m11

m21
and sd1 is an integer dividing n,

(3) d2 =
m11m12

m21m22
.

If all these conditions are met, let d = gcd(s, sd1s, d2,
n
s
), and D = gcd(sd1,

n
s
). Then

(2.49) Iδσ(ffin) =
ωN(s)

Vol(B1(N))

n d

|s3d1|
S
(
m11

n

D
,m12sd1, d, n

)
,

where ωN(s) =
∏

p|N ωp(s).

Remark 2.5.7. The integer s is only determined up to sign. However, expres-

sion (2.49) does not depend on the sign of s, since S(a, b, d, n) = S(a,−b, d, n) and

ωN(−1) = ω(−1) = 1 as ωp(−1) = 1 for all p ∤ N .

Remark 2.5.8. The two pairs of integers m1 and m2 essentially play symmetric

roles in our formula. More precisely, for our choice of test function f , the op-

erator ωN(n)
1
2R(f) is self-adjoint. Thus exchanging m1 and m2 amounts to take

the complex conjugate of the spectral side and multiply it by ωN(n). Hence the

geometric side, and in particular the identity contribution, should enjoy the same

symmetries. Proposition 2.5.3 says that the identity element has a non-zero con-

tribution only if there is an integer t dividing n with n
t
= ±m12

m22
t and such that

s = m21

m11
t is also an integer dividing n. This condition is indeed symmetric, as

interchanging m1 and m2 amounts to replace t with n
t
and s with n

s
. In addition,

we have S
(
m11

n
gcd(t, n

s
)
,m12t, d, n

)
= S

(
m21

n
gcd(s, n

t
)
,m22

n
t
, d, n

)
. Finally, using that
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|s3d1| =
∣∣∣n3 m4

21m
3
22

m4
11m

3
12

∣∣∣ 12 , multiplying n
|s3d1| by the factor 1

|m4
11m

3
12|

that comes from the

Archimedean part in Proposition 2.5.2 gives n−
1
2 (m11m21)

−2|m12m22|−
3
2 .

Remark 2.5.9. In the case n = 1 we must have s = ±1 and hence m11 = ±m21.

Together with the condition d1d2 = ±m2
11m12

m2
21m22

= n
s2

this also gives m12 = ±m22.

Remark 2.5.10. Using condition (2.48) we find that the contribution from the

identity element is non-zero only if for all prime p | n we have

vp(s) ≤ vp(m21) + vp(m21) + min(0, vp(m21)− vp(m11)) + 1,

which in turn implies that for all prime p we have

vp(n) ≤ 2min(vp(m11), vp(m21)) + vp(m12) + vp(m22) + 1.

Proof. The finite part of the orbital integral corresponding to the identity

element reduces to

Iδσ(ffin) =

∫
U(Afin)

f(uδ)ψm1(u)du =

∫
U(Afin)

f(suδ)ψm1(u) du.

Assume it is non-zero. Note that by Lemma 2.5.5 we have µ(suδ) = n. Then

by Assumption 2.3, suδ ∈ Supp(f) if and only if suδ ∈ Mat4(Ẑ). In particular,

each entry of sδ must be an integer. Furthermore by Lemma 2.5.1 we must have

δ =

[
d1

1
d2

d1d2

]
with d1 = m11

m21
, d2 = m11m12

m21m22
. So we learn that sd1 = sm11

m21
∈ Z,

s | n, and sd1 | n. Now let us examine the non-diagonal entries of suδ. Write

u =

[
1 c a−cx
x 1 a b

1 −x
1

]
. Then the following conditions must hold:

(1) sd1x ∈ Ẑ and n
s
x ∈ Ẑ,
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(2) c′
.
= n

sd1
c ∈ Ẑ,

(3) a′
.
= n

sd1
a ∈ Ẑ,

(4) n
s
(a− cx) ∈ Ẑ,

(5) b′
.
= n

s
b ∈ Ẑ.

Condition (1) is equivalent to x ∈ 1
D
Ẑ, where D = gcd(sd1,

n
s
) (note that sd1 |

sD). Set x′ = Dx. Then condition (4) gives d1a
′ − d1

D
c′x′ ∈ Ẑ. Combined with

conditions (1), (2) and (3), this is equivalent to c′x′ ≡ Da′ mod D
d1
. Now, ψm1(u) =

θfin(m11x + m12c) and f(suδ) = ωN (s)

Vol(B1(N))
. Therefore integration with respect to

b gives Vol
(
s
n
Ẑ
)

ωN (s)

Vol(B1(N))
= n

s
ωN (s)

Vol(B1(N))
. Next, changing variables x = 1

D
x′ and

c = sd1
n
c′, for fixed a the x, c-integral is

I(a) =
ωN(s)

Vol(B1(N))

n2D

s2d1

∫ ∫
c′x′≡Da′ mod D

d1

θfin

(
m11

x′

D
+m12

sd1
n
c′
)
dx′ dc′.

Since D | sd1 and m12
s2d21
n

= m22, and since θfin is trivial on Ẑ the integrand is

constant on cosets x′ + sd1Ẑ and c′ + sd1Ẑ. As sd1 | sD, it is also constant on cosets

x′ + sDẐ and c′ + sDẐ. Therefore we get

I(a) =
ωN(s)

Vol(B1(N))

n2

|Dd1s4|
∑

x,y∈Z/sDZ
xy∈Da′+ D

d1
Ẑ

e

(
m11x

D
+

m12sd1y

n

)
.
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Finally the a integrand depends only on a′ mod D
d1
Ẑ, thus, setting d = gcd

(
D, D

d1

)
=

gcd(s, sd1sd2,
n
s
) we get

Iδσ(ffin) =
ωN(s)

Vol(B1(N))

n3

|s5D2d1|
∑

a∈Z/ D
d1

Z

∑
x,y∈Z/sDZ
xy∈Da+ D

d1
Ẑ

e

(
m11x

D
+

m12sd1y

n

)

=
ωN(s)

Vol(B1(N))

n3

|s5D2d1|
d

∑
x,y∈Z/sDZ
xy∈dZ

e

(
m11x

D
+

m12sd1y

n

)

=
ωN(s)

Vol(B1(N))

n

|s3d1|
d

∑
x,y∈Z/ nZ
xy∈dZ

e

(
m11x

D
+

m12sd1y

n

)
. □

5.4.2. The contribution from the longest Weyl element. The following lemma

makes it explicit how to compute the Bruhat decomposition for elements in the cell

of the long Weyl element. One could do the same for each element of the Weyl group,

but, as it is straightforward calculations, we only include this case for the sake of

clarity in latter arguments.

Lemma 2.5.7. Let F be a field, and let g ∈ GSp4(F). Assume

g =

[
1 c1 a1
x1 1 a1+c1x1 b1

1 −x1
1

]
J

[ t1
t2

t3t
−1
1

t3t
−1
2

][
1 c2 a2−c2x2
x2 1 a2 b2

1 −x2
1

]
= [ A B

C D ] =

[
a11 a12
a21 a22 B
c11 c12
c21 c22

d11 d12
d21 d22

]
.

Set

∆1 = [ a11 a12c21 c22 ], ∆2 =
[
c12 d11
c22 d21

]
.
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Then

t3 = µ(g), t2 = −c22, t1t2 = det(C),

x1 = −c12
c22
, x2 =

c21
c22
, c1 =

det(∆1)

det(C)
, c2 = −det(∆2)

det(C)
,

a1 =
a12
c22

a2 =
d21
c22

b1 =
a22
c22

b2 =
d22
c22

.

Moreover, if g = [ A B
C D ] ∈ GSp4(F) with C = [ c11 c12c21 c22 ] satisfying det(C) ̸= 0 and

c22 ̸= 0 then g ∈ UJTU .

Proof. The first claims follow by computing explicitly

C = [ 1 −x1
1 ]
[ −t1

−t2
]
[ 1
x2 1 ] =

[ −t1+t2x1x2 t2x1
−t2x2 −t2

]
,

∆1 = [ c1 a11 ]
[ −t1

−t2
]
[ 1
x2 1 ], ∆2 = [ 1 −x1

1 ]
[ −t1

−t2
]
[ c2
1 a2 ],

D = [ 1 −x1
1 ]
[ −t1

−t2
][

c2 a2−c2x2
a2 b2

]
, A = [ c1 a1

a1+c1x1 b1 ]
[ −t1

−t2
]
[ 1
x2 1 ].

To prove the last claim, it suffices to show that provided detC ̸= 0 and c22 ̸= 0,

there exist at most one g ∈ GSp4(F) with the specified values for µ(g), C, a12, a22,

d21, d22, det(∆1) and det(∆2). Since c22 ̸= 0, the values of a12, c21 and det(∆1) =

a11c22 − c21a12 determine the value of a11. The equation ⊤AC = ⊤CA then gives

a12c11 + a22c21 = a11c12 + a21c22, which determines the value of a21 hence of A. The

same reasoning using det(∆1) and C
⊤D = D⊤C instead similarly fixes D. Finally

the equation ⊤AD − ⊤CB = µ(g) fixes B since we are assuming C is invertible. □
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Definition 2.5.3. Let s, d,m be three non-zero integers and define

CJ(s, d,m) = {g = [ A B
C D ] : det(C) = d, c22 = −s, µ(g) = m}

and

ΓJ(N, s, d,m) = B1(N) ∩Mat4(Z) ∩ CJ(s, d,m).

For g = [ A B
C D ] ∈ GSp4, let ∆1 = [ a11 a12c21 c22 ] and ∆2 =

[
c12 d11
c22 d21

]
. Then, for m1,m2 two

pair of non-zero integers, we define the following generalized twisted Kloosterman

sum

KlJ(m1,m2, s, d,m) =∑
g∈U(Z)\ΓJ(N,s,d,m)/U(Z)

ωN(a22)e

(
m11c12 −m21c21

s
+

m12 det(∆1)−m22 det(∆2)

d

)
.

Remark 2.5.11. Using Lemma 2.5.7, we can see that KlJ(m1,m2, s, d,m) is well

defined. Indeed, matrices in ΓJ(n, N, d, s) are of the form

g = u(x1, a1, b1, c1)J

[
d
s
s
m s

d
m
s

]
u(x2, a2, b2, c2).

Then c12
s

= x1,
c21
s

= −x2, det(∆1)
d

= c1 and det(∆2)
d

= −c2. Now multiplying g on the

left (resp. on the right) by an element of U(Z) does not change the classes of x1 and

c1 (resp. x2 and c2) in R/Z.

Proposition 2.5.4. Let σ = J, δ1 =

[
d1

1
d2

d1d2

]
with d1d2 = ± n

s2
for some

integer s. Then we have Iδσ(ffin) =
1

Vol(B1(N))
KlJ(m1,m2, s, d1s

2, s2d1d2).

Remark 2.5.12. The set ΓJ(N, s, d1s
2, s2d1d2) is non-empty only if N divides s

and N2 divides d1s
2.
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Proof. The finite part of the orbital integral corresponding to the longest Weyl

element reduces to

Iδσ(ffin) =

∫
U(Afin)

∫
U(Afin)

f(u1Jδu2)ψm1(u1)ψm2(u2) du1 du2

=

∫
U(Afin)

∫
U(Afin)

f(su1Jδu2)ψm1(u1)ψm2(u2) du1 du2.

By Assumption 2.3 we have su1Jδu2 ∈ Supp(f) if and only if su1Jδu2 = [ A B
C D ] ∈

Z(Afin)M(n, N). In this case, we have f(su1Jδu2) = ωN (a22)

Vol(B1(N))
, and Lemma 2.5.7

shows that

ψm1(u1)ψm2(u2) = e

(
−m11c12 +m21c21

c22
+

m12 det(∆1)−m22 det(∆2)

det(C)

)
.

Moreover, f is left and right U(Ẑ)-invariant, and the characters ψm1 and ψm2 are trivial

on Ẑ. Therefore, if we consider the map φ : U(Afin) × U(Afin) → G(A), (u1, u2) 7→

su1Jδu2, we have

Iδσ(ffin) =
∑

U(Ẑ)\(M(n,N)∩Im(φ))/U(Ẑ)

ωN(a22)

Vol(B1(N))

×e
(
−m11c12 +m21c21

c22
+
m12 det(∆1)−m22 det(∆2)

det(C)

)
.

Now by Lemma 2.5.7, Im(φ) = CJ(s, d1s
2, s2d1d2). Therefore,

U(Ẑ)\(M(n, N) ∩ Im(φ))/U(Ẑ)

may be identified to U(Z)\ΓJ(N, s, d1s
2, s2d1d2)/U(Z). □

5.4.3. Contribution from σ = s1s2s1.
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Definition 2.5.4. Let s, d,m be three non-zero integers and define

C121(s, d,m) = {g = [ A B
C D ] : det(C) = 0, c22 = −s, det(∆2) = d, µ(g) = m}

and

Γ121(N, s, d,m) = B1(N) ∩Mat4(Z) ∩ C121(s, d,m).

For g = [ A B
C D ] ∈ GSp4, let ∆3 =

[
a12 b11
c22 d21

]
. Then we define the following generalized

twisted Kloosterman sum

Kl121(m1,m2, s, d,m) =∑
g∈U(Z)\Γ121(N,s,d,m)/Uσ(Z)

ωN(a22)e

(
m11c12 −m21c21

s
+

m12 det(∆3)

d

)
.

By a similar argument as in the case of the long Weyl element, Kl121(m1,m2, s, d,m)

is well-defined, and together with the condition on δ from Lemma 2.5.1 we get the

following.

Proposition 2.5.5. Let σ = s1s2s1, δ1 =

[
d1

1
d2

d1d2

]
with d1d2 = ± n

s2
for

some integer s and d1m12 = d2m22. Then we have

Iδσ(ffin) =
1

Vol(B1(N))
Kl121(m1,m2, s, d2s

2, s2d1d2).

Remark 2.5.13. The set Γ121(n, N, s, d2s
2, s2d1d2) is non-empty only if N divides

s and N2 divides d2s
2.

5.4.4. Contribution from σ = s2s1s2.
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Definition 2.5.5. Let s, d be three non-zero integers and define

C212(s, d,m) = {g = [ A B
C D ] : det(C) = −d, c22 = 0, c21 = −s, µ(g) = m}

and

Γ212(N, s, d,m) = Mat4(Z) ∩B1(N) ∩ C212.

We define the following generalized twisted Kloosterman sum

Kl212(m1,m2, s, d,m) =∑
g∈U(Z)\Γ212(N,s,d,m)/Uσ(Z)

ωN(a22)e

(
m11c11 −m22d21

s
− m12 det(∆1)

d

)
.

By a similar argument as above, Kl212(m1,m2, d, s) is well defined, and we have

the following.

Proposition 2.5.6. Let σ = s1s2s1, δ1 =

[
d1

1
d2

d1d2

]
with d1d2 = ± n

s2
for

some integer s and m11 = −d1m21. Then we have

Iδσ(ffin) =
1

Vol(B1(N))
Kl212(m1,m2, sd1, d1s

2, sd1d2).

Remark 2.5.14. The set Γ212(n, N, d1s
2, d1s) is non-empty only if N divides d1s

and N2 divides d1s
2.

6. The final formula

We now assemble the material from previous sections to obtain our relative trace

formula. Let N ≥ 1 be an integer. We define the adelic congruence subgroup
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B1(N) to be matrices of the form g∞gfin where g∞ ∈ K∞ and gfin ∈ {g ∈ G(Ẑ) :

g ≡
[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N}. Fix a character ω : Q×R×\A× → C, that we may see as a

character of the centre of G(A). Assume that ω is trivial on (1+N Ẑ)∩ Ẑ×, and define

ωN(t) =
∏

p|N ω(tp). For each standard parabolic subgroup P = NPMP (including

G itself), consider the space HP defined in Section 4.1. For each character χ of the

centre of MP whose restriction to the centre of G coincides with ω, let GP (N,χ) be

an orthonormal basis consisting of factorizable vectors of the subspaces of functions

ϕ in HP that are generic, B1(N)-fixed, and have central character χ. Specifically,

• If P = G then G(N,ω) = GP (N,ω) consists of cuspidal eigenfunctions of the

centre of the universal enveloping algebra in L2(Z(R)G(Q)\G(A), ω)B1(N),

• If P = B, each such character χ may be identified with a triplet of characters

(ω1, ω2, ω3) satisfying ω1ω2ω
2
3 = ω. Choose a set of representatives S =

{k1, · · · , kd} of (K ∩B(A))\K/B1(N). Then there is a basis (ei)1≤i≤d of CS

such that functions in GP (N,ω1, ω2, ω3) are of the form

ϕB
j (bkiγ) = χ(b)ej(ki)

for b ∈ B(A), γ ∈ B1(N).

• If P = PK, each such character χ may be identified with a pair of characters

(ω1, ω2) satisfying ω1ω2 = ω. Choose a set of representatives S = {k1, · · · , kd}

of (K ∩ PK(A))\K/B1(N). For 1 ≤ i ≤ d, consider the compact subgroup

of GL2 given by Ci = ProjGL2
PK

(
StabK∩PK(A)(ki)

)
. Let di = dim(πCi) and

dπ =
∑d

1 di. Then, for each cuspidal automorphic representation π of GL2

with central character ω1 and whose Archimedean component is a principal
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series there is a basis (uj)1≤j≤dπ = ((uj,i)1≤i≤d)1≤j≤dπ of
∏

i π
Ci such that

functions in GP (N,ω1, ω2) are of the form

ϕK
π,j(pkiγ) = ω2(p)uj,i(Proj

GL2
PK

(p))

for p ∈ PK(A), γ ∈ B1(N). In particular each ui,j is a GL2 adelic Maaß form.

• If P = PS, each such character χ may be identified with a pair of characters

(ω1, ω2) satisfying ω1ω
2
2 = ω. Choose a set of representatives S = {k1, · · · , kd}

of (K ∩ PS(A))\K/B1(N). Keeping notations of § 4.3.3, for 1 ≤ i ≤ d, con-

sider the compact subgroup of GL2 given by Ci = ProjGL2
PS

(
StabK∩PS(A)(ki)

)
.

Let di = dim(πCi) and dπ =
∑d

1 di. Then, for each cuspidal automorphic

representation π of GL2 with central character ω1 and whose Archimedean

component is a principal series there is a basis (uj)1≤j≤dπ = ((uj,i)1≤i≤d)1≤j≤dπ

of
∏

i π
Ci such that functions in GP (N,ω1, ω2) are of the form

ϕS
π,j(pkiγ) = ω2 ◦ µ(p)uj,i(ProjGL2

PS
(p))

for p ∈ PS(A), γ ∈ B1(N). In particular each ui,j is a GL2 adelic Maaß form.

Now fix an integer n > 0 coprime to N . Consider

M(n, N) =
{
g ∈ G(Afin) ∩Mat4(Ẑ) : g ≡

[ ∗ ∗ ∗
∗ 1 ∗ ∗

∗ ∗
∗

]
mod N,µ(g) ∈ n Ẑ×

}
.

Define the n-th Hecke operator of level B1(N) by

Tnϕ(g) =

∫
M(n,N)

ϕ(gx) dx.
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Then for every standard parabolic subgroup P , for every element u ∈ GP and for

every ν ∈ ia∗P , the Eisenstein series E(·, u, ν) is an eigenfunction of Tn. We shall

denote the corresponding eigenvalue by λn(u, ν). Then we have the following.

Theorem 2.6.1. Let m1, m2 be two pairs of non-zero integers, t1, t2 ∈ A+. Let h

be a Paley-Wiener function on aC and let c be the constant appearing in Theorem 2.3.2.

Then we have

c(Σcusp + ΣB + ΣK + ΣS) =
1

Vol(B1(N))
(K1 +K121 +K212 +KJ).

The expression Σcusp + ΣB + ΣK + ΣS is given by

Σcusp =
∑

u∈G(N,ω)

h(νu)λn(u)Wψ(u)(t1t
−1
m1

)Wψ(u)(t2t
−1
m2

),

ΣB =
1

8

∑
ω1ω2ω2

3=ω

∑
u∈GB(N,ω1,ω2,ω3)

∫
ia∗
h(ν)λn(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν,

ΣK =
1

2

∑
ω1ω2=ω

∑
u∈GPK

(N,ω1,ω2)

∫
ia∗K

h(ν + νK(su))λn(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν,

ΣS =
1

2

∑
ω1ω2

2=ω

∑
u∈GPS

(N,ω1,ω2)

∫
ia∗S

h(ν + νS(su))λn(u, ν)

×Wψ(E(·, u, ν))(t1t−1
m1

)Wψ(E(·, u, ν))(t2t−1
m2

) dν,
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where νu (resp. su) is the spectral parameter of the representation of GSp4(R) (resp.

GL2(R)) attached to u, νK and νS are given by Propositions 2.4.4 and 2.4.6. On the

right hand side,

• K1 is non-zero only if there is an integer t dividing n with n
t
= m12

m22
t and

such that s = m21

m11
t is also an integer dividing n, in which case, setting

d = gcd(s, n
s
, t, n

t
) and

T (n,m1,m2) = d× ωN(s) n
− 1

2 (m11m21)
−2|m12m22|−

3
2

× S

(
m11

n

gcd(t, n
s
)
,m12t, d, n

)
we have

K1 = T (n,m1,m2)

∫
a∗
h(−iν)W (iν, t−1

m1
t1, ψ)W (−iν, t−1

m2
t2, ψ)

dν

c(iν)c(−iν)
.

• The contribution of the long Weyl element is

KJ =
∑
N |s
N2|k

KlJ(m1,m2, s, k, n)IJ(h)

(
k

s2
,
n

k

)
,

• The contribution of s1s2s1 is non-zero only if n m12

m22
= b2 for some rational

number b, in which case it is given by

K121 = m22

∑
N |kb

Kl121(m1,m2, Nk, bNk, n)I121(h)

(
n

Nkb
,
b

Nk

)
,
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• The contribution K212 of s2s1s2 is given by

m21

∑
m21N |sm11

m21N2|s2m11

Kl212

(
m1,m2,−s

m11

m21

,−s2m11

m21

, n

)
I212(h)

(
−m11

m21

,− n

s2
m21

m11

)
,

where we have defined Iσ(h)(d1, d2) as the integral∫
a∗
h(−iν)W (iν, t−1

m1
t1, ψ)

×
∫
Uσ(R)\U(R)

W

(
−iν, t−1

m1
σ

[
d1

1
d2

d1d2

]
tm2u1t

−1
m2

t2, ψ

)
ψ(u1) du1

dν

c(iν)c(−iν)
.

Moreover, if Conjecture 2.5.1 is true then we have

Iσ(h)(d1, d2) =

∫
a∗
h(−iν)Kσ

(
−iν, t−1

m1
σ

[
d1

1
d2

d1d2

]
tm2σ

−1, ψ

)
×W (iν, t1t

−1
m1
, ψ)W (−iν, t2t−1

m2
, ψ)

dν

c(iν)c(−iν)
,

where the generalised Bessel functions Kσ have been defined in § 5.3.



CHAPTER 3

Equidistribution of Satake parameters of automorphic forms

for GSp4

1. Introduction

The distribution of Satake parameters of automorphic forms is a classical problem

in number theory. In the case of GL2, the Sato-Tate conjecture states that, for a fixed

typical newform u of trivial central character, the Hecke eigenvalues λp(u) (which in

this case are αp(u) + αp(u)
−1, where αp(u) are the corresponding Satake parameters)

equidistribute with respect to the Sato-Tate measure dµST as p varies among primes

not dividing the level. The Sato-Tate conjecture is known for holomorphic forms of

weight k ≥ 2 [BLGHT11]. This is usually referred as the “horizontal” distribution

problem.

On the other hand, one can fix the prime p and allow u to vary, making the problem

amenable to the (Selberg or Arthur) trace formula. This easier problem is known as the

“vertical” distribution problem and it asks for the distribution of the Satake parameters

αp(u) as u varies and as the weight or level tends to infinity. This problem has been

addressed for GL2 independently by Bruggeman [Bru78] and Sarnak [Sar87] for

Maaß forms and by Serre [Ser97] and Duke-Conrey-Farmer [CDF97] for holomorphic

143
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forms. The relevant measure in this case is not the Sato-Tate measure, but the p-adic

Plancherel measure, given by dµPl
p (x) =

p+1

(p
1
2−p−

1
2 )−x2

dµST(x).

A similar problem, the weighted vertical equidistribution problem is obtained by

replacing the use of the trace formula by a relative trace formula. This corresponds

to count every automorphic form with a certain harmonic weight coming from

the relative trace formula, and to ask for the weighted vertical distribution of the

Satake parameters. This has been done by Knightly and Li for holomorphic forms

using the Petersson formula [Li04,KL08] and for Maaß forms using the Kuznetsov

formula [KL13]. Interestingly, in the weighted vertical equidistribution problem, the

limiting measure is the Sato-Tate measure µST, independently of the choice of the

prime p not dividing the level.

Moving away from the case of GL2, the unweighted vertical equidistribution

problem has been tackled for groups admitting discrete series at the infinite place by

the work of Shin [Shi12] and Shin-Templier [ST16], and by Matz-Templier [MT21]

for Maaß forms on SLn / SOn. Kim, Wakatsuki and Yamauchi [KWY20] have also

investigated the situation of Siegel modular forms on GSp4. As in the case of GL2, in

this type of problem,the limiting distribution is the p-adic Plancherel measure µPl
p ,

which converges to the Sato-Tate measure µST as the prime p tends to infinity.

On the other hand, the weighted vertical equidistribution problem has been

treated for Siegel modular forms by Kowalski, Saha and Tsimerman [KST12] and

Dickson [Dic15] in the case of GSp4, and by Knightly and Li [KL19] for GSp2n.

The situation of Maaß forms is known by [BBR14] for GL3, and conjecturally for
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PGLn by [Zho14]. Here again, the situation is analogous to GL2 in that the limiting

measure is the Sato-Tate measure µST.

In this chapter, we apply the Kuznetsov formula to treat the weighted vertical

equidistribution problem for the whole generic, spherical at infinity spectrum of

GSp4 for the group B1(N). In order to obtain a weighted vertical equidistribution

for Maaß forms on GSp4, we would still need to bound the contribution from the

continuous spectrum. This is work in progress. We access the Satake parameters via

the local Whittaker function, using the Casselman-Shalika formula. To derive the

equidistribution result, we need to show that the set of test functions we can generate

this way spans the relevant space of test functions. More precisely, our approach allows

us to choose the test function to be an arbitrary Ω-invariant Laurent polynomial,

which is shown to be sufficient by a Stone-Weierstraß density argument. This is

done in Section 3 below. Finally, for a fixed Laurent polynomial g, the non-diagonal

contribution on the geometric side is shown to vanish identically for N large enough

(in terms of g). In other words, the first “moments” of the weighted distribution

of the Satake parameters coincide exactly with the corresponding moments of the

Sato-Tate distribution, until a certain point that depends on N and that goes to

infinity with N .

2. Satake parameters

We follow the exposition of [Pit19] and [KST12]. Let p be a prime number. Let

σ, χ1, χ2 be unramified characters of Q×
p . They determine an unramified character

of the Borel subgroup B of GSp4(Qp) that is trivial on the unipotent radical, and
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whose values on the diagonal are given by χ

([ x
y
tx−1

ty−1

])
= σ(t)χ1(x)χ2(y).

The representation χ1 × χ2 ⋊ σ of GSp4(Qp) obtained by normalized induction from

χ has a unique subquotient π(σ, χ1, χ2) that is spherical, meaning it contains a

non-zero vector fixed by Kp = GSp4(Zp). One can check that the central character

of π(σ, χ1, χ2) is σ
2χ1χ2. Moreover, two such representations are isomorphic to each

other if and only if their inducing characters are equal modulo the action of the Weyl

group.

It is known that any irreducible admissible representation π of GSp4(Qp) that is

spherical is of the form π(σ, χ1, χ2) for some unramified characters σ, χ1, χ2 of Q×
p .

Now any unramified character of Qp is determined by its value at p. Hence π is

determined by the tuple of non-zero complex numbers (σ(p), χ1(p), χ2(p)) modulo

the action of the Weyl group. If moreover π has trivial central character, it holds

that σ2(p)χ1(p)χ2(p) = 1, hence π is completely determined by the pair (x, y) =

(σ(p), σ(p)χ1(p)) ∈ C× × C×, modulo the action of the Weyl group. These are the

Satake parameters of π. The action of the Weyl group is generated by the two

transformations

(3.1) (x, y) 7→ (x, y−1) and (x, y) 7→ (y−1, x−1).

Let π be a spherical irreducible admissible representation of GSp4(Qp) with trivial

central character and assume moreover that π is unitary and generic. By [PS09,

Proposition 3.1], its Satake parameters (x, y) must satisfy p−
1
2 < |x|, |y| < p

1
2 together

with one of the following conditions:
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(1) (x, y) ∈ S1 × S1, the tempered case,

(2) (x, y) ∈ S1 × R or (x, y) ∈ R× S1,

(3) (x, y) ∈ R1 = {(λz, λ−1z), λ > 0, z ∈ S1} or (x, y) ∈ R2 = {(λz, λz−1), λ >

0, z ∈ S1},

(4) (x, y) ∈ R× R.

Accordingly, we define the space Y of putative Satake parameters to be the quotient

of

X = Cp ∩
(
(S1 × S1) ∪ (S1 × R) ∪ (R× S1) ∪R1 ∪R2 ∪ (R× R)

)
by the action of the Weyl group described in (3.1), where Cp is the compact set

{(z1, z2) ∈ C2, p−
1
2 ≤ |z1|, |z2| ≤ p

1
2}. The following remark is trivial but turns out to

be important for later use of the Stone-Weierstraß theorem.

Remark 3.2.1. If (x, y) ∈Y then x is equal to either x, −x, x−1, y or y−1.

We parametrize the subset of Y corresponding to tempered representations (S1 ×

S1)/Ω ⊂ Y by (S1 × S1)/Ω = {(eiθ1 , eiθ2) : 0 ≤ θ1 ≤ θ2 ≤ π}. The Sato-Tate

measure is supported on the tempered spectrum, and, in these coordinates, it is

given by

(3.2) dµST (θ1, θ2) =
4

π2
(cos θ1 − cos θ2)

2 sin2 θ1 sin
2 θ2dθ1dθ2.

3. The Whittaker function

Let π be an irreducible spherical admissible generic representation of GSp4(Qp)

with trivial central character. Let (x, y) be the Satake parameters of π, and let
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the normalized Whittaker function W(x, y) be the unique right-Kp-invariant

function in the Whittaker model of π that satisfies W(x, y)(1) = 1 (the fact that

a non-zero Kp-fixed vector in the Whittaker model of π doesn’t vanish at 1 follows

from the proof of [RS07, Corollary 7.1.5]). By uniqueness of the Whittaker model,

the map (x, y) 7→ W(x, y) is invariant by the Weyl group. By the Casselman-Shalika

formula [CS80], see also [RS07, Formula (7.3)], the value of W(x, y) on diagonal

matrices is given by

(3.3)

Wa,b,c(x, y)
.
= W(x, y)

([
pa

pb

pc−a

pc−b

])
=


Wa,b,c(x,y)

W0,0,0(x,y)
if b ≥ a and 2a ≥ c

0 otherwise,

where for all integers a, b, c we define

Wa,b,c(x, y) = p−2b−a+3c/2x−3((xb−a+1 − xa−b−1)(ya+b+2−c − yc−a−b−2)

−(yb−a+1 − ya−b−1)(xa+b−c+2 − xc−a−b−2)).

(3.4)

We now prove the relevant results of functional analysis we need about the Whittaker

function for our equidistribution result.

Lemma 3.3.1. The functions (Wa,b,c)c≤a≤b
c∈{0,1}

span the space V ⊂ C[x, x−1, y, y−1]

of Laurent polynomials P (x, y) that satisfy P (x, y−1) = −P (x, y) and P (y−1, x−1) =

−(xy)3P (x, y).

Proof. The action (3.1) of the Weyl group on Satake parameters extends to

an action on Laurent polynomials, and it is clear that any Laurent polynomial

in V is a linear combination of Laurent polynomials of the form Ln,m(x, y) =
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x−3
∑

σ∈Ω sgn(σ)σ(xnym) with 0 < n < m. But Ln,m = p2b+a−3c/2Wa,b,c where

a = m−n+c−1
2

, b = n+m+c−3
2

and c = (n+m) mod 2. □

Lemma 3.3.2. The space of functions spanned by (Wa,b,c)c≤a≤b
c∈{0,1}

is dense in the set

C(Y) of continuous functions on Y.

Proof. Using notations of Lemma 3.3.1, we clearly have W0,0,0(x, y)C[X +

Y,XY ] ⊂ V , where X = x + x−1 and Y = y + y−1. Hence every element of

C[X + Y,XY ] can be written as a linear combination of functions of the form Wa,b,c

with 0 < b − a + 1 < a + b + 2 − c and c ∈ {0, 1}. So it suffices to show that

C[X + Y,XY ] is dense in C(Y). By Remark 3.2.1, the algebra C[X + Y,XY ] is

stable under complex conjugation, hence by the Stone-Weierstraß theorem, it suffices

to show that the two functions X + Y and XY separate the points on Y. But, for

fixed (u, v), the (at most) two solutions for (X, Y ) of the system


X + Y = u

XY = v

are symmetric to each other, and each value for X (resp. for Y ) gives two possible

solutions for x (resp. for y), that are inverse from each other. Thus the (at most)

eight solutions for (x, y) are equal modulo the action of the Weyl group, and hence

represent the same point in Y. □

Lemma 3.3.3. Let a1, b1, c1, a2, b2, c2 be integers and, for ease of notation, set

nj = bj−aj+1 and mj = aj+ bj− cj+2, and h = 2(b1+ b2)+(a1+a2)−3(c1+ c2)/2.

Assume 0 < nj < mj and cj ∈ {0, 1} for j = 1, 2. Then

ph
∫
Y

Wa1,b1,c1Wa2,b2,c2 dµST =


1 if a1 = a2, b1 = b2 and c1 = c2

0 otherwise.
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Proof. Note that W0,0,0(e
iθ1 , eiθ2) = −8e−3iθ1 sin θ1 sin θ2(cos θ1 − cos θ2). Hence

combining the definition of the Sato-Tate measure (3.2) with formulae (3.3), (3.4)

the integral we have to evaluate becomes

4

π2

∫ π

0

∫ θ2

0

(sin(n1θ1) sin(m1θ2)− sin(m1θ1) sin(n1θ2))× · · ·

· · · × (sin(n2θ1) sin(m2θ2)− sin(m2θ1) sin(n2θ2)) dθ1 dθ2

=
1

2π2
[2I(n1, n2)I(m1,m2)− 2I(n1,m2)I(m1, n2)],

where

I(n,m) =

∫ 2π

0

sin(nθ) sin(mθ) dθ =


sgn(mn)π if |n| = |m|

0 otherwise.

Since nj,mj > 0, the term I(n1, n2)I(m1,m2) is non-zero if and only if n1 = n2

and m1 = m2. The term I(n1,m2)I(m1, n2) is non-zero if and only if n1 = m2 and

m1 = n2, but this contradicts the assumption that n2 < m2 and n1 < m1. □

4. Vanishing of the geometric side

The contribution from the non-identity elements in the geometric side is given

by sums over diagonal matrices δ whose entries satisfy various divisibility conditions

modulo N . On the other hand, the test function f∞ is compactly supported modulo

the centre, and it so is its integral transform appearing on the geometric side. The

upshot is for N large enough, every δ subject to the relevant divisibility conditions

lies outside of the support of the corresponding integral transform, and thus the

corresponding geometric terms vanishes. We now make this argument more precise.
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Lemma 3.4.1. Let K ⊂ GSp4(R) be compact. Let X = R×K. There exists a

constant CK such that every element x ∈ X has a Bruhat decomposition x = u1σδu2

where the entries of 1√
|µ(δ)|

δ satisfy

• the second diagonal entry lies in [−CK , CK ],

• if j0 is the unique index such that σ−1
4j0

= 1, then the j0-th diagonal entry lies

in [−CK , CK ].

Proof. Let K ′ = {± 1√
|µ(k)|

k : k ∈ K}. Then K ′ is itself compact, and in

particular the elements of K ′ have bounded entries. Now let x = zk with z ∈ R and

k ∈ K. Let k′ = ± 1√
|µ(k)|

k ∈ K ′. Then

1√
|µ(δ)|

δ =
1√
|µ(x)|

σ−1u−1
1 xu−1

2

= σ−1u−1
1 k′

[
1 ∗ ∗
∗ 1 ∗ ∗

1 ∗
1

]

= σ−1u−1
1

[ ∗ k′12 ∗ ∗
∗ k′22 ∗ ∗
∗ k′32 ∗ ∗
∗ k′42 ∗ ∗

]
.

Without loss of generality, we may assume u1 ∈ Uσ. But one may easily check that

if i0 is the unique index such that σ−1
2i0

= 1 then for all u ∈ Uσ we have ui0j = 0 for

i0 ̸= j, and ui0i0 = 1. It follows δ22 = k′i2 is bounded. Now we may instead assume

that u2 ∈ Uσ−1 . Checking that elements u ∈ Uσ−1 satisfy uij0 = 0 for i ̸= j0 and

uj0j0 = 1, a similar calculation establishes the second claim. □

Corollary 3.4.1. Assume σ ̸= 1. Then for N large enough (in terms of h, t1

and t2) the term Kσ in the geometric side of the Kuznetsov formula vanishes.
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Proof. We use expression (2.44) for the Archimedean part of the orbital integrals.

Let K = t1 Supp(f∞)t−1
2 . Then Kσ ̸= 0 only if there exists u, u1 ∈ U(R) such that

uσδu1 ∈ K. Now if σ = J then by Remark 2.5.12 the only elements δ contributing to

KJ satisfy

1√
|µ(δ)|

δ =

 Nm
k

Nk
± k

Nm

± 1
Nk


for some non-zero integers k,m. In particular, for N ≥ CK , by Lemma 3.4.1, we get

KJ = 0. If σ = s1s2s1 then by Remark 2.5.13 the only elements δ contributing to

K121 satisfy

1√
|µ(δ)|

δ =

 k
Nm

Nk
±Nm

k

± 1
Nk


for some non-zero integers k,m. In particular, for N ≥ CK , by Lemma 3.4.1, we

get K121 = 0. Finally, if σ = s1s2s1 then by Remark 2.5.14 the only elements δ

contributing to K212 satisfy

1√
|µ(δ)|

δ =

 Nk
Nm
k

± 1
Nk

± k
Nm


for some non-zero integers k,m. But in this case we have j0 = 1 in Lemma 3.4.1, and

thus we see that again for N ≥ CK , we have K212 = 0. □

5. The equidistribution result

We are now ready to prove our equidistribution result. We start with a technical

functional analysis lemma.
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Lemma 3.5.1. Let (Π, dϖ) be a measured space. Let K be a compact space endowed

with a Borel probability measure µ. Consider a non-negative measurable function

w : Π → R≥0 and a sequence (X(N))N>0 of measurable sets X(N) ⊆ Π such that for

all N we have

0 <

∫
X(N)

w(ϖ) dϖ <∞.

Assume that there is a measurable function S : Π → K and a dense subspace W

of the space C(K) of complex-valued continuous functions on K endowed with the

sup-norm topology, such that for all g ∈ W we have

(3.5) lim
N→∞

∫
X(N)

w(ϖ)g ◦S(ϖ) dϖ∫
X(N)

w(ϖ) dϖ
=

∫
K

g dµ.

Then the same holds for all g ∈ C(K).

Proof. Observe that since w is non-negative we have

(3.6)

∣∣∣∣∣
∫
X(N)

w(ϖ)g ◦S(ϖ) dϖ∫
X(N)

w(ϖ) dϖ

∣∣∣∣∣ ≤ ∥g∥∞.

It suffices to show that the left hand side of (3.5) is defined for all g ∈ C(K). Indeed,

both side will then define continuous linear functionals on C(K), that coincide on the

dense subspace W , hence are equal. Now if g = w +h with w ∈ W and ∥h∥∞ ≤ ϵ,

it follows by linearity from (3.6) that the limits of all the converging subsequences

of
(∫

X(N) w(ϖ)g◦S(ϖ) dϖ∫
X(N) w(ϖ) dϖ

)
N>0

are in an ϵ-neighborhood of
∫
K
w dµ, and in particular

they are at a distance at most 2ϵ from each other. But by density of W , this holds

for arbitrary ϵ > 0, and hence all the converging subsequences have the same limit,

which implies that the left hand side of (3.5) is well defined. □
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To state the equidistribution result, let us set up some notations.

Definition 3.5.1. Define Π to be the set of pairs ϖ = (π, u) where π is a unitary

automorphic representation of GSp4(AQ) and u ∈ π. We endow Π with a measure dϖ

in the following way. Recall from § 4.3 that π ≃ I(σν) for some parabolic subgroup P

(with possibly P=G), ν ∈ ia∗P (in case P = G, this space is {0}) and σ a representation

occurring discretely in the spectrum of MP . We then put dϖ = dν⊗| · |RMP ,disc
⊗| · |π,

where dν is the Haar measure on ia∗P , | · |RMP ,disc
is the counting measure on RMP ,disc

and | · |π is the counting measure on the space of π.

Definition 3.5.2. For any integer N and each Dirichlet character ω, we define

X(N,ω) ⊂ Π to be the set of pairs1 ϖ = (π,E(·, u, ν)) where π ≃ I(σν) has

central character ω and u ∈ Bσ,1, the basis of the B1(N)-invariant subspace of I(σν)

described in § 4.4.

Definition 3.5.3. Fix a matrix t ∈ A+, and a Paley-Wiener function h on aC

such that h(νπ) ≥ 0 for all spectral parameters νπ. Given ϖ = (π, u) ∈ Π, define a

spectral weight

w(ϖ)
.
= |Wψ(u)(t)|2h(νπ).

Remark 3.5.1. The existence of a Paley-Wiener function h on aC such that

h(νπ) ≥ 0 for all spectral parameters νπ and
∫
X(N,ω)

w(π) dπ > 0 for N large enough

is proved in Corollary 3.5.1 below.

Remark 3.5.2. According to the Lapid-Mao Conjecture, when t = 1 and π is

cuspidal, the weight w(ϖ) should be related to L(1, π,Ad), the value at 1 of the adjoint

1recall that the discrete spectrum corresponds to P = G, in which case we have ν = 0, π = IP (πν)
and E(·, u, ν) = u.
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L-function of π. Chen and Ichino have proved that the Lapid-Mao conjecture holds

for automorphic representations π of GSp4 such that π∞ is a principal series and π

has squarefree paramodular conductor (see [CI19, Theorem 2.1]). In particular, since

B(N) is contained in the paramodular subgroup of level N , when N is squarefree and

ω = 1 we have

|Wψ(u)(1)|2 = 2−cζ(2)ζ(4)
|W(νu, 1, ψ)|2

L(1, π,Ad)

∏
v

1

C(πv)
,

for all u ∈ G(N,ω), where

• W(ν, 1, ψ) is the normalised Jacquet integral defined in (2.25),

• c =


1 if π is stable,

2 if πis endoscopic,

• C(πv) =


1 if v ∤ N∞,

ζp(4)

pζp(2)
if v = p | N,

2−4 if v = ∞.

Definition 3.5.4. Let p be a prime. Fix an integer N coprime to p and a

Dirichlet character ω modulo N such that ω(p) = 1. For π ≃
⊗

v πv an automorphic

representation of GSp4(AQ) and u ∈ π, define Sp(π) = (αp(u), βp(u)) ∈ Y as the

Satake parameters of the local representation πp. Finally, define a measure µN on Y

as the push-forward of the measure w(ϖ)dϖ on X(N,ω) along Sp.

Our main results say that, as N gets large, the Satake parameters at p of the whole

B1(N)-invariant generic spectrum, suitably weighted, equidistribute with respect to

the Sato-Tate measure.
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Theorem 3.5.1. Fix a prime number p. For each integer N coprime to p,

pick a Dirichlet character ωN modulo N such that ωN(p) = 1. For brevity, set

X(N) = X(N,ωN). Then the probability measure 1
µN (Y)

µN converges weakly to the

Sato-Tate measure (3.2) as N tends to infinity. This means that for any continuous

Ω-invariant function g on C2 we have

(3.7) lim
N→∞

∫
X(N)

w(ϖ)g(αp(u), βp(u)) dϖ∫
X(N)

w(ϖ) dϖ
=

∫
C2/Ω

g(x, y) dµST .

Remark 3.5.3. The proof shows that when g is a fixed Laurent polynomial,

identity (3.7) is actually an equality for N large enough.

Remark 3.5.4. A more interesting result would be that the Satake parameters of

Maaß forms, weighted with the same weight, equidistribute with respect to the Sato-

Tate measure. This is equivalent to showing that the part of the measure 1
µN (Y)

µN

that is supported on the continuous spectrum converges weakly to zero. This is work

in progress

Proof. We apply the Kuznetsov formula with n = 1, m1 = (1, 1), m2 = (pi, pj),

t1 = t and t2 = ttm2 . Let c = 2i + j mod 2 and b = 2i+j+c
2

and a = b − i, so that

c ≤ a ≤ b and

t−1
m2

=

[
p−i

1
p−i−j

p−2i−j

]
= p−b

[
pa

pb

pc−a

pc−b

]
.
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Let (π, u) ∈ X(N). Then Wψ(u) defines a factorizable vector in the global Whittaker

model of π, hence for all g ∈ G(A) we have

Wψ(u)(g) =
∏
v

Wv(gv),

where for each place v, Wp is a certain vector in the Whittaker model of πv that is

fixed by the corresponding local component of B1(N). For v prime, v ̸= p, we have

t−1
m2

∈ B1(p
nv) and hence Wv(t

−1
m2

) = Wv(1). For v = p, we have B1(p
np) = Kp hence

by uniqueness of the Kp-fixed vector we must have Wp(t
−1
m2

) = Wp(1)Wa,b,c(αp, βp).

So we get

Wψ(u)(t2t
−1
m2

) = Wψ(u)(t)Wa,b,c(αp, βp),

and the spectral side of the Kuznetsov formula is

cΣ =

∫
X(N)

w(ϖ)Wa,b,c(αp(u), βp(u)) dϖ.

The identity contribution in the geometric side is

K1 = δ(i,j)=(0,0)

∫
a∗
h(−iν)W (iν, t, ψ)W (−iν, t, ψ) dν

c(iν)c(−iν)
.

In particular, taking (i, j) = (0, 0), since Vol(B1(N)) = 1
[K:B(N)]

, by Corollary 3.4.1

we have that for N large enough

(3.8) c

∫
X(N)

w(ϖ) dϖ = [K : B(N)]

∫
a∗
h(−iν)W (iν, t, ψ)W (−iν, t, ψ) dν

c(iν)c(−iν)
.
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It follows that for all c ≤ a ≤ b with c ∈ {0, 1} we have for N large enough (in terms

of a, b, c)

∫
X(N)

w(ϖ)Wa,b,c(αp(u), βp(u)) dϖ∫
X(N)

w(ϖ) dϖ
=


1 if a = b = c = 0

0 otherwise.

In view of Lemma 3.3.3, the equidistribution statement (3.7) holds when g = Wa,b,c,

and by linearity it still holds when g belongs to the subspace W of C(Y) that is

spanned by (Wa,b,c)c≤a≤b
c∈{0,1}

. The result follows from Lemma 3.5.1 and Lemma 3.3.2. □

Lemma 3.5.2. For ϵ ≥ 0 define Bϵ = {g ∈ Mat4(R) : ∥g∥ ≤ ϵ}, and BK
ϵ = {kg⊤k :

∥g∥ ≤ ϵ, k ∈ K∞} where ∥g∥ = maxi,j |gi,j| and Sϵ = {g ∈ Sp4(R), g⊤g ∈ 1 + BK
ϵ }.

Then we have

K∞SϵK∞ = Sϵ,

and for ϵ, δ > 0 small enough we have

S−1
ϵ ⊆ S5ϵ

and

Sϵ · Sδ ⊆ 1 +B4δ(5+16ϵ).

Proof. The first claim is obvious from the fact that K∞ = {g ∈ Sp4(R) : g⊤g =

1}. Now observe that if g⊤g ∈ 1 +Bϵ then we have

(3.9) ∥ga⊤g∥ ≤ 4(1 + ϵ)∥a∥.
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for all a ∈ Mat4(R). In particular, taking ϵ = 0, we obtain

(3.10) Bϵ ⊆ BK
ϵ ⊆ B4ϵ.

The second claims then follows from the Taylor expansion of the map g 7→ g−1 at

g = 1. Now let g1 ∈ Sϵ, g2 ∈ Sδ. Then by (3.10) we have

(g1g2)
⊤(g1g2) ∈ g1(1 +B4δ)

⊤g1 ⊆ 1 +B4δ + g1B4δ
⊤g1

and the result follows using (3.9). □

Corollary 3.5.1. Fix t ∈ A+. Let F : Sp4(R) → R satisfying the following

hypothesis

• F is smooth and bi-K∞-invariant,

• Supp(F ) = Sϵ as defined in Lemma 3.5.2.

• F only assumes non-negative values.

Let f∞ = F ∗∗F , where F ∗(g) = F (g−1). Then we have f̃∞(νπ) ≥ 0 for all automorphic

representation π of GSp4 and if ϵ > 0 is small enough then for all N large enough

and for all Dirichlet character ω modulo N we have
∫
X(N)

w(ϖ) dϖ > 0.

Proof. We have R(F ∗ ∗ F ) = R(F ∗) ◦R(F ), and R(F ∗) is the adjoint of R(F ),

hence the eigenvalues of R(f∞) are non-negative. But those are precisely h(νπ). Now

by (3.8) it suffices to show that∫
a∗
h(−iν)W (iν, t, ψ)W (−iν, t, ψ) dν

c(iν)c(−iν)
̸= 0.
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By Theorem 2.3.4, this is the same as showing that∫
U(R)

f∞(t−1ut)ψ(u) du ̸= 0.

By definition of f∞, this integral equals∫
U(R)

∫
Sp4(R)

F (y−1)F (y−1t−1ut)ψ(u) dy du.

Now by Lemma 3.5.2, if both y−1 and y−1t−1ut ∈ Supp(F ) = Sϵ then t−1ut ∈ 1+B21ϵ

and hence ψ(u) = 1 +O(ϵ∥t−1∥ · ∥t∥). So it suffices to show that∫
U(R)

∫
Sp4(R)

F (y−1)F (y−1t−1ut) dy du ̸= 0.

But if both y−1 ∈ Supp(F ) and t−1ut ∈ S ϵ
21

⊂ Supp(F ) then by Lemma 3.5.2 we

have y−1t−1ut ∈ Sϵ = Supp(F ). Since Sϵ and U(R) ∩ S ϵ
21

have positive measure and

since F is non-negative, this proves the claim. □



APPENDIX A

Absolute convergence of the kernel

For completeness, we give a proof of Proposition 2.4.8. The proof is directly

adapted from [KL13], where the case of GL2 was treated. Here we give a proof for

general connected reductive algebraic groups over Q. We start with recalling some

definition and facts from [Art05].

1. Langlands spectral decomposition

Fix P0 a minimal parabolic subgroup. Let K =
∏

pKp be a compact subgroup

of G(A) such that K∞ is a maximal compact subgroup of the connected component

G◦(R) of 1 in G(R) and Kp is a maximal compact subgroup of G(Qp) for all prime p,

and such that we have G = P0K. Many of the definitions we gave in Chapter 2 can

be directly adapted with this choice of K.

Definition A.1.1. We let AG(Q) be the largest central subgroup of G over Q

that is a Q-split torus. Let A+
G(R) be the connected component of identity in AG(R).

Then we have G(A) = A+
G(R)G1(A), where G1(A) = {g ∈ G(A), HG(g) = 0} and HG

was defined (in the particular case of G = GSp4) in Section 2.4 of Chapter 2.

Definition A.1.2. If P is a parabolic subgroup with Levi decomposition P =

NPMP , we let AP be the centre of MP , and we let aP be the Lie algebra of AP (R) ∩

G1(A).
161
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Remark A.1.1. Note that this definition differs from [Art05]. This is because

we are interested in the spectral decomposition of L2(AG(R)G(Q)\G(A)) instead of

L2(G(Q)\G(A)).

Definition A.1.3. If P and P ′ are two standard parabolic subgroups, let Ω(aP , aP ′)

be the set of distinct linear isomorphisms from aP ⊂ aP0 onto aP ′ ⊂ aP0 obtained by

restriction of elements in the Weyl group Ω. If Ω(aP , aP ′) is non-empty, we say that

P and P ′ are associated.

Remark A.1.2. In the case of GSp4, two standard parabolic subgroups are associ-

ated if and only if they are equal.

For each pair of standard parabolic subgroups P and P ′ and for each s ∈ Ω(aP , aP ′),

there is an intertwining operator between the representations IP (ν) and IP ′(sν)

(whose definition is given in § 4.1).

Definition A.1.4. Let s ∈ Ω(aP , aP ′), let ϕ ∈ H 0
P , and let ν ∈ a∗P (C) with large

enough real part. Then for every x ∈ G(A) the following integral converges absolutely

to an analytic function in ν

(M(s, ν)ϕ)(x) = exp(−⟨sν+ρP ′ , HP ′(x)⟩)
∫
Ns(A)

ϕ(s−1nx) exp(⟨ν+ρP , HP (s
−1nx)⟩) dn,

where Ns = (NP ′∩sNP s
−1)\NP ′ (here we identify s ∈ Ω(aP , aP ′) with a representative

in G(Q)).

Now fix a finite index subgroup Γ =
∏

p Γp of K with Γ∞ = K∞, and a character

of AG(A) that is trivial on AG(Q)AG(R) and on AG(A)∩ Γ. We denote by L2(ω) the
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subspace of L2(AG(R)G(Q)/G(A)) consisting of functions that are right-Γ-invariant

and that have central character ω. The spectral decomposition of L2(ω) is due to

Langlands.

Theorem A.1.1. (1) Suppose ϕ ∈ H 0
P . Then E(x, ϕ, ν) and M(s, ν)ϕ can

be analytically continued to meromorphic functions of ν ∈ a∗P (C) that satisfy

the functional equations

E(x,M(s, ν)ϕ, sν) = E(x, ϕ nu)

and

M(s1s2, ν) =M(s1, s2ν)M(s2, ν).

Moreover both E(x, ϕ, ν) and M(s, ν)ϕ are analytic in ν ∈ ia∗P , and M(s, ν)

extends to a unitary operator from HP to HP ′.

(2) For each association class P of standard parabolic subgroups, let LP be the

Hilbert space of families of measurable functions F = (FP )P∈P with

FP : ia∗P → H Γ
P (ω)

satisfying

FP ′(sν) =M(s, ν)FP (ν)

and

∥F∥2 .
=
∑
P∈P

1

nP

∫
ia∗P

∥FP (ν)∥2 dν <∞,

where

nP =
∑
P ′∈P

#Ω(aP , aP ′).
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Then the mapping that sends F to the function S(F ) defined for x ∈ G(A) by

S(F )(x) =
∑
P∈P

1

nP

∫
ia∗P

E(x, FP (ν), ν) dν,

defined for when FP is a smooth compactly supported function on ia∗P with

values in a finite dimensional subspace of H 0
P , extends to a unitary mapping

from LP onto a closed G(A)-invariant subspace L2
P(ω) of L

2(ω). Moreover,

we have an orthogonal direct sum decomposition

L2(ω) =
⊕
P

L2
P(ω).

2. The geometric kernel and the spectral kernel

In this section we prove the absolute convergence of the spectral expression of the

kernel associated to a function f satisfying the following.

Assumption A.1. Consider a measurable function f : G(A) → C with the

following properties.

• f(gz) = ω(z)f(g) for all z ∈ AG(A) and g ∈ G(A),

• f is compactly supported modulo AG,

• f is left and right Γ-invariant,

• f = f∞ffin where f∞ is smooth and has its support contained in G◦(R).

Associated to f we have the operator R(f) acting on L2(ω) by

R(f)ϕ(x) =

∫
G(A)

f(y)ϕ(xy) dy =

∫
G(Q)\G(A)

Kf (x, y)ψ(y) dy,
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where

Kf (x, y) =
∑

γ∈G(Q)

f(x−1γy)

and G = AG\G. Since f is continuous and compactly supported modulo AG(A) and

since G(Q) is a discrete subset of G(A), the series defining Kf(x, y) is locally finite

and hence the latter is a continuous function on G(A)×G(A). By Theorem A.1.1

the corresponding operator IP (f, ν) on H Γ
P (ω) given by

IP (f, ν)ϕ =

∫
G(A)

f(y)IP (y, ν)ϕ dy

satisfies R(f) ◦S = S ◦IP (f). In addition, we have a convolution product f ∗ g given

by

(f ∗ g)(x) =
∫
G(A)

f(y)g(y−1x) dy,

and we have R(f ∗ g) = R(f) ◦ R(g). Finally, the adjoint of R(f) is R(f ∗), where

f ∗(g) = f(g−1).

Lemma A.2.1. Fix an association class P of parabolic subgroups. Let J = (JP )P∈P

be a family of compact sets JP ⊂ ia∗P satisfying the symmetry condition sJP = JP ′

for all s ∈ Ω(aP , aP ′). Moreover, for each P ∈ P let QP be a finite set of irreducible

representations π with central character ω, occurring in RMP ,disc, and with the property

that if π ∈ QP then there exists π′ ∈ QP ′ such that M(s, ν)IP (πν) = IP (π
′
sν) for all

s ∈ Ω(aP , aP ′) and all ν ∈ iaP
1. Finally, for each π ∈ QP , let Bπ be an orthonormal

1note that the space of IP (πν) does not depend on ν and hence this condition does not actually
depend on ν either.
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basis of the finite dimensional space IP (π
Γ
ν ) consisting of elements of H 0

P . Define

KQ,J
P (x, y) =

∑
P∈P

1

nP

∫
JP

∑
π∈QP

∑
u∈Bπ

E(x,IP (ν, f)u, ν)E(y,IP (ν, f)u, ν) dν.

Then there exists a bounded linear operator TP on L2
P(ω) such that for all ψ ∈ L2

P(ω)

that is bounded and have compact support modulo G(Q)AG(A) we have

(TPψ)(x) =

∫
G(Q)\G(A)

KQ,J
P (x, y)ψ(y) dy

for almost all x ∈ G(A).

Proof. Let LQ
P be the subspace of LP consisting of those F such that FP has

it image contained in
⊕

π∈QP
πΓ for all P ∈ P. Let Let L

cQ
P be the subspace of LP

consisting of those F such that FP has it image contained in
⊕

π ̸∈QP
πΓ for all P ∈ P,

so we have the orthogonal decomposition

LP = L
Q
P ⊕L

cQ
P .

Next, let LQ,J
P be the subspace of LQ

P consisting of those F such that FP is supported

on JP for all P ∈ P. Then we have the orthogonal decomposition

L
Q
P = L

Q,J
P ⊕L

Q,cJ
P ,

where cJP = ia∗P − JP . Taking the image of these decomposition by S, by Theo-

rem A.1.1 we have

LP = LQP ⊕ L
cQ
P
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and

LQP = LQ,JP ⊕ LQ,
cJ

P ,

where LQP = S(LQ
P ) ⊂ L2

P(ω) and so on. Define S−1
Q,J : L2

P(ω) → L
Q,J
P by

S−1
Q,Jϕ =


S−1ϕ if ϕ ∈ LQ,JP

0 if ϕ ∈ LQ,
cJ

P or ϕ ∈ L
cQ
P .

Explicitly, S−1
Q,J = S−1

J ◦ PQ where PQ is the orthogonal projection of L2
P(ω) onto L

Q
P,

and for ϕ ∈ LQP we have

(S−1
J ϕ)P (ν) =


(S−1ϕ)P (ν) if ν ∈ JP

0 otherwise.

The restriction of S−1
Q,J to LQ,JP is an isomorphism of Hilbert spaces. Moreover

PQ,J
.
= (S−1

Q,J)
∗ ◦ S−1

Q,J

is the orthogonal projection of L2
P(ω) onto L

Q,J
P , and hence we have

S−1
Q,J = S−1 ◦ PQ,J .

Also note that we have S−1 ◦ PQ = P̂Q ◦ S−1, where P̂Q is the orthogonal projection

of LP onto L
Q
P . Define

TP = PQ,J ◦R(f ∗ f ∗) ◦ PQ,J ,
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Then TP is bounded because ∥TP∥ ≤ ∥R(f ∗ f ∗)∥ ≤ ∥f ∗ f ∗∥1 by [KL06, p. 140].

Now for ψ1, ψ2 ∈ L2
P(ω) bounded compactly supported we have

⟨TPψ1, ψ2⟩ = ⟨PQ,J ◦R(f ∗ f ∗) ◦ PQ,Jψ1, ψ2⟩

= ⟨R(f ∗) ◦ PQ,Jψ1, R(f
∗) ◦ PQ,Jψ2⟩

= ⟨PQ,J ◦R(f ∗)ψ1, PQ,J ◦R(f ∗)ψ2⟩

= ⟨S−1 ◦ PQ,J ◦R(f ∗)ψ1, S
−1 ◦ PQ,J ◦R(f ∗)ψ2⟩

= ⟨S−1
Q,J ◦R(f

∗)ψ1, S
−1
Q,J ◦R(f

∗)ψ2⟩

=
∑
P∈P

1

nP

∫
JP

⟨(S−1 ◦ PQ ◦R(f ∗)ψ1)P , (S
−1 ◦ PQ ◦R(f ∗)ψ2)P ⟩ dν

=
∑
P∈P

1

nP

∫
JP

⟨(P̂Q ◦ S−1 ◦R(f ∗)ψ1)P , (P̂Q ◦ S−1 ◦R(f ∗)ψ2)P ⟩ dν

=
∑
P∈P

1

nP

∫
JP

⟨P̂Q ◦IP (f
∗, ν) ◦ (S−1ψ1)P , P̂Q ◦IP (f

∗, ν) ◦ (S−1ψ1)P ⟩ dν

=
∑
P∈P

1

nP

∫
JP

∑
π∈QP

∑
u∈Bπ

⟨(S−1ψ1)P ,IP (f, ν)u⟩⟨(S−1ψ2)P ,IP (f, ν)u⟩ dν

=
∑
P∈P

1

nP

∫
JP

∑
π∈QP

∑
u∈Bπ

⟨(ψ1, E(·,IP (f, ν)u, ν)⟩⟨(ψ1, E(·,IP (f, ν)u, ν)⟩ dν

=

∫
(G(Q)\G(A))2

KQ,J
P (x, y)ψ1(y)ψ2(x) dy dx.

The interchange of summation and integration order is justified because Eisenstein

series are continuous, JP is compact, the u-sum is finite, and ψ1, ψ2 are bounded with

compact support modulo AG(A)G(Q). □

Lemma A.2.2. For each association class of parabolic subgroups P, fix J and Q

as in Lemma A.2.1, and let TP be the corresponding bounded linear operator. Let
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T =
∑

P TP. Then for all ψ ∈ L2(ω) bounded and compactly supported modulo

G(Q)AG(A) we have

⟨Tψ, ψ⟩ ≤ ⟨R(f ∗ f ∗)ψ, ψ⟩.

Proof. For each class P let PP be the orthogonal projection of L2(ω) onto

L2
P(ω). For each irreducible representation π ̸∈ QP with central character ω, fix an

orthonormal basis Bπ of Ip(πν)
Γ. Thus

⋃
πBπ is an orthonormal basis of H Γ

P (ω).

By the proof of Lemma A.2.1 above, we have

⟨TPψ, ψ⟩ =
∑
P∈P

1

nP

∫
JP

∑
π∈QP

∑
u∈Bπ

|(ψ,E(·, IP (f, ν)u, ν)|2 dν

≤
∑
P∈P

1

nP

∫
ia∗P

∑
π⊂RMp,disc

∑
u∈Bπ

|(ψ,E(·, IP (f, ν)u, ν)|2 dν

=
∑
P∈P

1

nP

∫
ia∗P

∑
π⊂RMp,disc

∑
u∈Bπ

|(R(f ∗)ψ,E(·, u, ν)|2 dν

= ⟨PP ◦R(f ∗)ψ, PP ◦R(f ∗)ψ⟩

= ⟨PP ◦R(f ∗ f ∗)ψ, PPψ⟩

since PP commutes with R(f). □

We shall use the following result from [GGK03, Lemma 5.2.1].

Lemma A.2.3. Let X be a Radon measure space, and let T be an operator on

L2(X). Suppose there is a continuous function K(x, y) on X ×X such that for all

ψ ∈ L2(X) that is bounded and compactly supported we have

Tψ =

∫
X

K(x, y)ψ(y) dy
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and

⟨Tψ, ψ⟩ ≥ 0.

Then K(x, x) ≥ 0 for all x ∈ X.

Proposition A.2.1. For each association class of parabolic subgroups P, and for

each irreducible representation π with central character ω occurring in RMP ,disc, fix

an orthonormal basis of IP (πν)
Γ consisting of elements of H 0

P . For all x ∈ G(A) we

have ∑
P

∑
P∈P

1

nP

∫
ia∗P

∑
π

∑
u∈Bπ

|E(x,IP (ν, f)u, ν)|2 dν ≤ Kf∗f∗(x, x).

Proof. For each association class of parabolic subgroup P, consider JP and

QP as in Lemma A.2.1, and let KQ,J(x, y) =
∑

PK
QP,JP
P (x, y). Then KQ,J(x, y) is

a continuous function on G(A)×G(A) since each JP is compact, each QP is finite,

and the Eisenstein series are continuous. The geometric kernel Kf∗f∗(x, y) is also

continuous. By Lemma A.2.2 we have ⟨(R(f ∗ f ∗ − T ))ψ, ψ⟩ ≥ 0 for all bounded

ψ ∈ L2(ω) with compact support. Hence by Lemma A.2.3 we get for all Q, J as above

KQ,J(x, x) ≤ Kf∗f∗(x, x).

Hence

∑
P

∑
P∈P

1

nP

∫
ia∗P

∑
π

∑
u∈Bπ

|E(x,IP (ν, f)u, ν)|2 dν = sup
Q,J

KQ,J(x, x) ≤ Kf∗f∗(x, x).

□

The following lemma is due to Duflo and Labesse [DL71] for GL2, see also [Art78,

Lemma 4.1] for the general case.
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Lemma A.2.4. There exist h1,∞, h2,∞, h3,∞, h4,∞ smooth functions on G(R)/AG(R)

that are bi-K∞-invariant, and whose support is contained in G0(R) and is compact

modulo AG(R), such that f∞ = h1,∞ ∗ h2,∞ + h3,∞ ∗ h4,∞.

Proof. Same as [KL13, Lemma 6.9] but we use [Art78, Lemma 4.1] instead

of [DL71, I.1.11]. □

Lemma A.2.5. Fix a parabolic subgroup P . Let π =
⊗

p≤∞ be an irreducible

representation occurring in RMP ,disc. Then the finite dimensional subspace IP (π∞)K∞

has a basis Bπ∞ such that for every smooth functions bi-K∞-invariant function h

on G(R)/AG(R) whose support is contained in G◦(R) and is compact modulo AG(R),

and for all ν ∈ ia∗P the elements of Bπ∞ are eigenfunctions of IP (h, ν).

Proof. Let Vπ be the representation space of IP (π∞,ν). We have an orthogonal

decomposition

(A.1) Vπ =
⊕
ρ

Vρ

where Vρ is a irreducible G◦(R)-invariant subspaces. By [Kna86, Theorem 8.1]

the dimension of the K∞-fixed subspace V K0
ρ in each Vρ is at most one. When

V K0
ρ ̸= {0}, write V K0

ρ = Ceρ with ∥eρ∥ = 1. Since h is supported on G◦(R), we may

apply Proposition 2.3.1 to each representation ρ of G◦(R), obtaining that eρ is an

eigenvector of IP (h, ν). Note that Bπ∞ = (eρ)ρ does not depend on ν because both

Vπ and the K∞-fixed subspace V K∞
π are independent of ν. □

Theorem A.2.1. Let f satisfying Assumption A.1. Assume that for each parabolic

subgroup P and for each irreducible representation π occurring in RMP ,disc, the space
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IP (π)
Γ has an orthonormal basis Bπ consisting of factorizable vectors u∞ ⊗ ufin such

that u∞ ∈ Bπ∞ and ufin is a common eigenfunction of all the operators IP (ffin, ν)

for ν ∈ a∗P . Then the series

Kabs(x, y) =
∑
P

∑
P∈P

1

nP

∫
ia∗P

∑
π

∑
u∈Bπ

|E(x,IP (ν, f)u, ν)E(y, u, ν)| dν

converges absolutely and defines a function that is bounded on compact subsets of

G(A)×G(A) and continuous in x and y separately.

Proof. First, by Lemma A.2.4, we may assume f∞ = h1,∞ ∗ h2,∞ + h3,∞ ∗ h4,∞.

Let T be the function on G(Afin) defined by

T (g) =


ω(z)

Vol(Γfin)
if there exists z ∈ AG(Afin) such that g ∈ zΓfin

0 otherwise .

Then f = h1 ∗ h2 + h3 ∗ h4, where h1 = h1,∞ffin, h2 = h2,∞T and similarly for h3 and

h4. Moreover if ϕ is right-Γ-invariant then we have R(T )ϕ = ϕ. Thus each function

hi (and a fortiori their convolution) satisfy the same conditions as f . Hence by the

triangle inequality, it suffices to consider the case f = h1 ∗ h2. By Lemma A.2.5 for

u ∈ Bπ, we can write IP (hj, ν)u = λj(ν)u for all ν ∈ ia∗P . Then we have

E(x,IP (ν, f)u, ν) = λ1(ν)λ2(ν)E(x, u, ν)

thus

E(x,IP (ν, f)u, ν)E(y, u, ν) = λ1(ν)λ2(ν)E(x, u, ν)E(y, u, ν)

= E(x,IP (ν, h1)u, ν)E(y,IP (ν, h∗2)u, ν).



2. THE GEOMETRIC KERNEL AND THE SPECTRAL KERNEL 173

Now consider any subset SP of all the irreducible representations π occurring in

RMP ,disc and any measurable subset RP of ia∗P . Then by the Cauchy-Schwarz inequality

we have

∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, f)u, ν)E(y, u, ν)| dν

=
∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, h1)u, ν)E(y,IP (ν, h
∗
2)u, ν)| dν

≤

(∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, h1)u, ν)|2 dν

) 1
2

×

(∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(y,IP (ν, h
∗
2)u, ν)|

2 dν

) 1
2

≤ Kh1∗h∗1(x, x)Kh∗2∗h2(y, y)

by Proposition A.2.1. Since both kernels are continuous, they are in particular

bounded on compact sets, which proves the first part of the theorem. Now let us fix

x ∈ G(A) and prove the continuity of Kabs(x, y) in y. Fix an arbitrary compact set

U ⊂ G(A). It suffices to show that the series/integral defining Kabs(x, y) converges

uniformly in y ∈ U . Let C an upper bound for Kh∗2∗h2(y, y) on U . Fix ϵ > 0. Since

∑
P

∑
P∈P

1

nP

∫
ia∗P

∑
π

∑
u∈Bπ

|E(x,IP (ν, h1)u, ν)|2 dν <∞,

if SP is a large enough finite set and RP is a large enough compact set for all parabolic

subgroup P then

∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, h1)u, ν)|2 dν <
ϵ2

C2
.
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Therefore by the above,

∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, f)u, ν)E(y, u, ν)| dν

≤

(∑
P

∑
P∈P

1

nP

∫
ia∗P−RP

∑
π ̸∈SP

∑
u∈Bπ

|E(x,IP (ν, h1)u, ν)|2 dν

) 1
2

Kh∗2∗h2(y, y)

≤ ϵ,

which establishes the result. The same reasoning holds after exchanging x and y. □
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