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Abstract

The formalism of automorphic representations makes the study of automorphic
forms amenable to representation-theoretic methods. In particular the Whittaker
model, when it exists, permits to extract interesting arithmetic and analytic informa-
tion. In this thesis, we give two instances of this principle, in which we are concerned
respectively with a) bounding the values taken by and b) the distribution of the

Satake parameters of certain automorphic forms.

In the first part of this thesis, carried out in Chapter 1, we study the problem of
bounding the sup norms of L?-normalized cuspidal automorphic newforms ¢ on GL,
in the level aspect. Prior to this work, strong upper bounds were only available if
the central character y of ¢ is not too highly ramified. We establish a uniform upper
bound in the level aspect for general x. If the level N is a square, our result reduces

to

[l < NT*e,

at least under the Ramanujan Conjecture. In particular, when x has conductor N,
this improves upon the previous best known bound ||¢]|ec < N2*€ in this setup (due
to Saha) and matches a lower bound due to Templier, thus our result is essentially

optimal in this case.
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In the second and more substantial part, carried out in Chapter 2, we develop a
Kuznetsov type formula for the group GSp,. To this end, we follow a relative trace
formula approach, and we focus on giving a final formula that is as explicit as possible.
In particular, our formula is valid for arbitrary level, arbitrary central character, and
includes the Hecke eigenvalues. We then use this Kuznetsov formula in Chapter 3 to
show that, as the level tends to infinity, the Satake parameters of automorphic forms

on GSp,, suitably weighted, equidistribute with respect to the Sato-Tate measure.
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General Introduction

Historically, Fourier’s concern in studying trigonometric series was analytical
in nature. One of his main discoveries is that an arbitrary piecewise continuous,
periodic function on the reals can be expressed as a Fourier series. Since then, his
results were vastly extended and generalised in numerous frameworks. Other areas of
mathematics, such as algebra, topology and representation theory, were brought in,
providing reinterpretations of Fourier theory from different perspectives and bearing
with them new interests. While recovering a function via its “Fourier coefficients” is
still an important motivation, Fourier theory has been generalised to new situations

where this is not always possible.

One such generalisation is the notion of Whittaker coefficients of automorphic
forms. Thanks to the close relationship between automorphic forms and the theory of
representations, the Whittaker coefficients can be interpreted from a representation

theoretic point of view, which in turn has consequences for number theory.

Let us give an overview of this principle. Let ¢ be an automorphic form for a
connected reductive algebraic group G over a global field F'. The right translates of ¢
by G(AF) (the group of adelic points of GG) generate a certain representation 7. It is
sufficient to consider the case when this representation 7 is irreducible. Now 7 may

(or may not) have a (global) Whittaker model. On the other hand, the Whittaker

11



12 GENERAL INTRODUCTION

coefficient 7' (¢) of ¢ is a function on G(Ap) which is given by definition by a certain
period integral of ¢ generalising the usual definition of Fourier coefficients. From
the definition, it satisfies some invariance properties that guarantee that the map
¢ — W (), if not identically zero, takes value in a Whittaker model of w. We say
that 7 is globally generic if {# () : ¢ € w} is non-zero. We henceforth assume this

is the case.

It is known by the Flath tensor product theorem that 7 is isomorphic to a
restricted tensor product over all places v of F' of local representations m, of G(F},):
m~ @), mp. The fact that m has a global Whittaker model immediately implies that
each representation m, has a local Whittaker model. The key point is that Whittaker
models are (usually) well-behaved. Namely, assume that each local representation ,
has a unique Whittaker model. Then this implies that the global Whittaker model
is itself unique, and moreover if ¢ € 7 corresponds to a pure tensor ), ¢,, then
we have ' (¢)(g) = [ [, #»(¢v)(gy) for all g € G(Ap), where %, is an isomorphism
between 7, and its local Whittaker model. This factorization property is important
for number theory. Indeed, it provides an instance of a local-global principle as well

as a connection with L-functions, as we shall see below in more details.

Now let us sketch how understanding the Whittaker coefficients can shed light
on different aspects of automorphic forms. Firstly, when a Whittaker expansion
is available, knowledge of the Whittaker coefficients of ¢ enables one to access
information on ¢ itself. While the Whittaker coefficients of ¢ are a rather mysterious
global object, one can study the local Whittaker coefficients, which “only” depend on

the corresponding local representation theory. Using the factorisation property, one
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may be able to derive some useful information on the global Whittaker coefficients.
This is an instance of a local to global principle. An important question which can be
tackled this way is that of bounding the sup norm of ¢. This question is addressed in
the case of automorphic newforms for GLy(Q) in Chapter 1 of this thesis. Note that
in general the non-vanishing of Whittaker coefficients of ¢ is not automatic, and even
if this is the case, it also does not guarantee that a Whittaker expansion is available
for ¢. For instance a Whittaker expansion in the traditional sense is not available for

automorphic forms on GSp, even if they are generic.

Secondly, the factorization property provides some insight that the Whittaker
coefficients “should” be related to L-functions. This is well known in the case of GL,
where the local Whittaker coefficients of a Hecke newform ¢ coincide at unramified
place with its Hecke eigenvalues, which are themselves the Dirichlet coefficients of
the L-function attached to ¢. In the situation of GSp,, the Whittaker coefficients
no longer coincide with the Hecke eigenvalues though they are closely related. If the
Hecke eigenvalues can’t be “directly” accessed through the Whittaker coefficients, they
both are dictated by the Satake parameters. It is thus interesting to use the Whittaker
coefficients to study some questions concerning the Satake parameters themselves.
Two important questions concerning the Satake parameters of automorphic forms

are their size and their distribution. In Chapter 3, we investigate the latter question

for GSp,(Q).

Instead of studying the Whittaker coefficients of a single automorphic form,
one can rather study the Whittaker coefficients of automorphic forms in a given

collection. When this collection consists of automorphic forms occurring in the
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spectral decomposition of a suitable space, a classical tool is the theory of relative
trace formulae. One may consider the spectral expansion of a certain automorphic
kernel, and take the Whittaker coefficients thereof. Using the Bruhat decomposition,
one can equate this spectral term to a “geometric term”. In Chapter 2, we follow
this approach to develop a Kuznetsov formula for the group GSp,(Q), on which our
study of Satake parameters in Chapter 3 is based. Because the Kuznetsov formula is
a central tool in analytic number theory, we believe Chapter 2 has its interest of its

own, and we expect it can be used to tackle other applications in the future.

In addition to being a tool for studying the Whittaker coefficients of automorphic
forms, relative trace formulae also provide a new motivation for studying them. Indeed,
the geometric side involves some (generalised) Kloosterman sums, whose definition
comes from the Bruhat decomposition, and this connection between Whittaker
coefficients and Kloosterman sums furnishes new ways of analysing the latter (this
line of investigation is not tackled in this thesis). The GLy Kloosterman sum are
classical and naturally arise in other problems of number theory, and more generally

for GL,, the Kloosterman sums attached to the Weyl element [ I, 1] are hyper-

—1

Kloosterman sums, but it seems that in more general situations the Kloosterman

sums do not occur “naturally” outside of the setting of relative trace formulae.



CHAPTER 1

Sup norm bounds for newforms on GL,

1. Introduction

Let ¢ be a cuspidal automorphic form on GLz(Ag) with conductor N =[] p"* and
central character y. Assume in addition ¢ is a newform, in the sense that there exists
either a Maafl or holomorphic cuspidal newform f of weight k for I';(NN) such that for

all g € SLy(R) we have ¢(g) = j(g,i) "% f(g-i), where as usual j(g, z) = cz + d for

a b
g= € SLy(R) and 2 € H. In particular, ¢ is bounded and has a finite L? norm,

c d

hence one may be interested in asking how its L> and its L? norm relate. In the
level aspect, one traditionally asks for bounds for ||¢[| = sup, |¢(g)| = sup, ly2 f(2)|
depending on N as ||¢||2 is fixed. Subsequent investigations have shown that it is
relevant for this problem to also take into account the conductor C' = Hp p of .

Assuming that ¢ is L?-normalized, the “trivial bound” is
(1.1) 1 < [[@lloe < N7F€

for any € > 0. Here and below, the implied constant may depend on € and on the
archimedean parameters of ¢. The upper bound in (1.1) does not appear to have
been written down previously for general N and C, but it can be deduced from the

main result of [Sah17] for instance.

15
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For squarefree N, the first non-trivial upper bound is due to Blomer and Holowin-
sky [BH10], and has been subject to several improvements by Harcos and Templier
(and some unpublished work of Helfgott and Ricotta) culminating with the result
of [HT13] which achieves the upper bound N3*¢. For non-squarefree N, the best
result to date is due to Saha [Sah17|, but it significantly improves on the trivial
bound only when y is not highly ramified (here and elsewhere we say x is highly
ramified if ¢, > [%2] for some prime p). Indeed, if x is not highly ramified and N is
a perfect square, then Saha’s result [Sah17] gives an upper bound of N T+, Recent
work of Hu and Saha (see [HS20], especially the last paragraph of their introduction)
suggests that this bound may be further improved in the compact case. On the other
hand, if N = C and if N is a perfect square, then Saha’s result [Sah17] reduces to
the trivial bound (1.1).

Templier was the first to provide evidence that the actual size of ||¢|| may depend

on how ramified y is. Namely, he proved in [Tem14| that whenever N = C' we have

(1.2) I6]loe > N T p2t%Y.

p PN

In particular, if NV is a square, then
1
6]l > N+~

We shall prove the following comparable upper bound, which improves on [Sah17]

when y is highly ramified.

THEOREM 1.1.1. Let m be an unitary cuspidal automorphic representation of

GL2(Aq) with central character wy. Let N =[], p" be the conductor of . Let ¢ € 7
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be an L?-normalized newform. Then

16]ls0 <em N[22 %7,
p|N

where § is any bound towards the Ramanujan Conjecture for m.

Theorem 1.1.1 provides for the first time non-trivial upper bounds for general N
that do not get worse when the conductor C' varies. As a point of comparison, the
main result of [Sah17] had an additional factor of [], prax{0e—13 1 which is larger
than one precisely when y is highly ramified. Furthermore, for C' = N, in view of the
lower bound (1.2) and assuming the Ramanujan Conjecture, our result is essentially
optimal when N is a square. Note that the Ramanujan Conjecture is known by
work of Deligne and Serre for ¢ arising from a holomorphic cusp form, and otherwise

6 = & is admissible [Kim03].

REMARK 1.1.1. In [Sahl7], the appeal to a bound towards the Ramanujan
Conjecture is avoided by using Holder inequality to estimate separately L? averages
of the Whittaker newforms at primes at which the central character is ramified and
moments of the coefficients A\, of the L-function attached to w. However, in our
situation, we want to exploit the fact that the Whittaker coefficients are supported on
arithmetic progressions of modulus L, say, as explained later. A similar technique
as in [Sahl17] would thus lead us to estimate moments of N\, on these arithmetic
progressions.  One might expect that these moments are approximately L times
smaller than the full moments, but such a result does not seem to be available. Hence,
if we were to bound them by positivity by the full moments, we would expect an over-

estimate of same order as L. Since estimates are known by Rankin-Selberg theory up



18 CHAPTER 1. SUP NORMS

to the eighth moments, and, as we shall see, L < Hcp>n7p pLﬂTpJ, one should be able
to replace N° in Theorem 1.1.1 with Hcp>n7p p%LnTpJ, similarly as in Theorem 1.1 of
[HNS19]. As pointed out by Andy Booker, with more work one can also interpolate
between N° and the eighth moments estimate, which leads to a better bound. However,

for the sake of brevity, we do not carry out these arguments.

The lower bound (1.2) has been generalized by Saha in [Sah16] and subsequently
by Assing in [Ass19b]. When y is not maximally ramified, there is still a gap
between the best known lower bound and the upper bound from Theorem 1.1.1.
Finally, let us mention that the hybrid bounds over Q in [Sah17], which combines
the Whittaker expansion with some amplification, still beats our result when x is not
highly ramified. For hybrid bounds over general number fields, we refer to the work

of Assing [Ass17, Ass19a].

The proof proceeds by using Whittaker expansion to reduce the problem of
bounding ¢ to that of understanding the local newforms attached to ¢. By making
use of the invariances of ¢, we can restrict ourselves to evaluate these local newforms in
the Whittaker model on some convenient cosets. The values of these local newforms
have been computed [Ass19b, Ass19a] by using a “basic identity” derived from the
Jacquet-Langlands local functional equations which was first expressed in this form
in [Sah16]. In the non maximally ramified case, local bounds are slightly weaker
than needed to obtain our result, and we take advantage of strong L?-bounds due to

Saha [Sah17] instead.
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Actually, we are using the Whittaker expansion of a certain translate of ¢, the “bal-
anced newform”. The main feature is that it is supported on arithmetic progressions,
which enables us to get some savings. Though we are working adelically, this fact can
also be seen classically by computing the Fourier expansion of the corresponding cusp
form at cusps of large width. The situation is somewhat analogous to [HNS19]|, where

the authors also get Whittaker expansions supported on arithmetic progressions.

Let us explain this analogy in the maximally ramified case — in which we get
optimal upper bounds. As we shall see, in this case each local representation with
ramified central character is of the form y; B x2, where x; has exponent of conductor
n, and X is unramified. Then the local balanced newform for 7 is a twist of the
local balanced newform for 1y, ' B 1. For representations of this type, the local
balanced newform coincides with the p-adic microlocal lift as defined in [Nel18]. Now
as explained in [HNS19], the microlocal lift is the split analogue of the minimal
vectors used there. Therefore the fact that we get optimal sup norm bounds in this
case is the direct analogue of Theorem 1.1 of [HNS19| which gives an optimal sup

norm bound for automorphic forms of minimal type.

It is worth noticing that [HNS19], [Sah20] as well as the present work provide
instances of the seemingly general principle according to which when considering
very localized vectors, one is able to establish very good and sometimes optimal

upper bounds. This is even the case when a Whittaker expansion is not available, as

in [Sah20].

The analysis of local newforms is given in Section 2. The proof of Theorem 1.1.1

is given in Section 3.
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2. Local bounds

In this section, F’ will denote a non-archimedean local field of characteristic zero
with residue field F,. Let o denote the ring of integers of F' and p its maximal ideal
with uniformizer ¢,. The discrete valuation associated to /' will be denoted by v,. We
define U(0) = 0, and for k > 1, U(k) = 1+ p*. We fix an additive unitary character
1 of F with conductor 0. In the sequel, the Whittaker models given will be those

with respect to .

2.1. Generalities.

2.1.1. Double coset decomposition. Let G = GLyo(F), K = GLy(0). For z € F

and y € F'*, consider the following elements

-1 0 01 0 1 0 vy

Then define the following subgroups
N =n(F), A=a(F™), Z = 2(F™),
and, for a an ideal of o,

l1+a o 0 0
(1.3) KWY(a)=Kn , K®(a) = Kn

a 0 a l+a
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Note that for a = p”, with n a non-negative integer, we have

(1.4) KO@y=| | k0|

ty tp

From [Sah16, Lemma 2.13], for any integer n > 0 we have the following double coset
decomposition

(1.5) G=1II1 II “ZNgmeKV ).

MEZ £=0 pycoX /(1+ptn)

where ¢, = min{¢,n — ¢}, and

Gy = a(t;")wn(tp_gy)
0 o
-1 —tp_gl/

DEFINITION 1.2.1. Assume n > 0 is a fixed integer. Then for any g € G we define

(m(g),é(g),y(g)) €L X% {07 e 7n} X OX/(l +p€(g)n)

as the unique triple such that

9 € ZN gun(g).(9) ) KD (7).

a b
REMARK 1.2.1. Any g € GLy(F) belongs to some ZNa(y)k where k = €
c d

GLy(0). Then by Remark 2.1 of [Sah17], we have ¢(g) = min{v,(c),n} and m(g) =
vy(y) —20(g). In particular, if g is already an element of GLy(0), then g is in a coset

of the form g_s; j «.
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Now we determine the double cosets corresponding to certain elements of interest

for the global application.

LEMMA 1.2.1. Consider two integers 0 < e <n. Let g € GLa(o)a(ty). Then there

exist a non-negative integer £ < n and v € 0* such that one of the following holds

(1) either { < e and g € ZNg_.0, KW (p"),
(2) ore <l <nandgé€ ZNgfzwe,e,uK(l)(Pn),

where the subgroup KM (p™) is defined in (1.3).
PROOF. We know by (1.5) that g € ZNg,, k1 for some k; € KU (p™) hence

gkl_la(tp_e) € ZNgmenalt,©).

Since g € Ka(tf), it follows that gk; 'a(t;¢) € K. By Remark 1.2.1, it is then in the

coset of some g_y; ;. with 0 < 57 <n. On the other hand,

gm,&,,a(t;e) = a(t;”)wn(tgéu)a(tge)
= a(tgl)wa(t;e)n(tg_ey)
= t;ea(t;”“)wn(t;_ﬁy).

If ¢ < e then

wn(t<y) = € GLa(0)
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so by Remark 1.2.1 a(ty"**)wn(t;*v) is in the coset of gmieo. So in this case,

G-2j.jx = Jm+e0 thus m = —e and we find that
g€ ZNG .0, KW (p™).

Otherwise a(t;’l*e)wn(tg_ey) = Gmtel—ew, therefore g_o; ;. = gmier—c, and we get
m+e=—2({—e), so
9 € ZNg_sriee KU (p).

U

2.1.2. Characters and representations. For x a character of F'*, we denote by
a(x) the exponent of the conductor of x, that is the least non-negative integer n such
that y is trivial on U(n). For 7 an irreducible admissible representation of G, we also
denote by a(m) the exponent of the conductor of 7, that is the least non-negative
integer n such that 7 has a K (p")-fixed vector. The central character of  will be

denoted by w;.

2.1.3. The local Whittaker newform. Fix 7 a generic irreducible admissible uni-
tarizable representation of G. From now on, we fix n = a(7), and we shall assume

that 7 is realized on its Whittaker model.

DEFINITION 1.2.2. The normalized newform W, attached to m is the unique

KW (p™)-fixed vector such that W (1) = 1.

The normalized conjugate-newform W) attached to 7 is the unique K (p™)-fixed

vector such that W*(1) = 1.
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REMARK 1.2.2. By (1.4), the function GLy(F) — C:

g—Wxlyg

by

is K@ (p™)-invariant. Thus there exists a complex number a; such that

1
Wil - =a,W:.

tp

In addition, we have W*(g) = wx(det(g))Wz(g), where 7 is the contragradient repre-

sentation to w. Altogether, we get that

Wa |- = azwr(det(g))Wx(g).

tp

One can even show that |a,| = 1 (see [Sah16, Lemma 2.17], or [Sah16, Propo-
sition 2.28] for an exact formula in terms of e-factors). Also note the following

identity

(16) n(t€+my_1)Z(tﬁ_ny_l)gm,é,u - gm+2€—n,n—€7—y 5
tn —7/_2

which, combined with the above, enables one to restrict attention to those cosets

n

5, at the price of changing m to 7.

satisfying ¢ <
Assing has computed the local Whittaker newforms in great generality, and
estimated them using the p-adic stationary phase method [Ass19b, Ass19a]. Let us

briefly explain the basic ideas of his method. For any fixed m € Z and 0 < ¢ < n the
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function on 0* given by v + Wy (g, ) only depends on v mod (1 + p*). Thus, by

Fourier inversion, there exist complex numbers ¢, ((x) such that

Wﬂ(.gm,l,l/) = Z Cm,l(:“):“(”)v

pneX ()

where X (€) is the set of characters u satisfying pu(t,) = 1 and a(u) < L.

Then, one may reformulate the Jacquet-Langlands local functional equation as
an equality of power series in the variable ¢° whose coefficients involve on one side
the Fourier coefficients ¢, ¢(11) one is interested in, and on the other side Gauss
sums and values of the local newform at some diagonal matrices, both of which are
known [Sch02]. This is the content of [Sah16, Proposition 2.23|. By identifying the
coefficients of the power series appearing in both side, one is then able to compute
inductively the coefficients ¢, ¢(1t), and, from there, the values of the local newform

on each double coset.

This can be done for each local representation 7, however Lemma 1.2.2 below
(same as [Sah16, Lemma 2.36]) will enable us to restrict ourselves to principal series
representations. By Remark 1.2.2, we can further restrict ourselves to the situation
¢ < 3. Finally, as we mentioned earlier, in our global application we shall use Saha’s
strong L2-bound [Sah17], so what we are really interested in this section is only the

support of the local newforms. Recall that we have fixed n = a(n).

a(m)
5 -

LEMMA 1.2.2. Assume a(w,) > Then ™ = x1 B x2, where x1 and 2 are
unitary characters with respective exponents of conductors a; = a(wy) and as =

n— a(wy).
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a(m)

5, as the

In the rest of this section, we shall only consider the case a(w,) >

main point of our global application is to take advantage of primes at which the
central character is highly ramified. Thus for our purpose, we only have to consider
m = x1 B x2 with ay < % < ay, where from now on we denote a; = a(x;) and

2

as = a(xz). We first state the case of maximally ramified principal series.

LEMMA 1.2.3. Let  be a generic irreducible admissible unitarizable representation
of G with exponent of conductor a(r) =mn > 1. Assume a(w,) = a(m). Then there

exists vy € 0* such that for all m € Z and for 0 < { < %, we have

m—+4n

|W7r(gm,0,u>| = :H-mz—nq_ 2,

qﬁ if v € vy +pt
2 1 9
|W7r(g—n—£,€,u)| -

0 ifveuv +p,

and if 0 < £ <n and m+ £ # —n then Wr(gme,) = 0.
PRrOOF. This follows from Lemma 3.4 and proof of Lemma 5.8 in [Ass19b]. O

In particular, one sees that in this case the local Whittaker newform is essentially
supported on an arithmetic progressions. The case 1 < ay < § < a; is a bit more
complicated, but one may obtain a result similar in flavour. Work of Assing [Ass19a]
gives precise bounds for the local newform, however these local bounds are slightly
weaker than what we need for our global application. Consequently, we only give
here statements regarding the support of the local newform, and we shall rely on

strong bounds for the L? mass [Sah17].
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LEMMA 1.2.4. Let 7 be a generic irreducible admissible unitarizable representation

of G with exponent of conductor n > 1. Assume § < a(wy) <n. Set a; = a(w,) and
ag =n — ay. Assume moreover F' = Q,. There exists v € 0* such that if m € Z

and 0 < € < %, then have Wr(gme,) = 0 unless one of the following holds:

(1) { < ay and m = —n,
(2) { =ay and m > —n,

(3) > as, m=—a; —{ and v € v; 7' + ¢,/ 720>

Proor. This follows almost directly from inspection of the cases in Lemma 3.4.12
in [Ass19al. Since we are taking F' = Q,, the quantity xp defined in [Ass19a]
equals one, so the only bothersome case is ay < £ < ‘“Zﬂ when ay = 1. By [Ass19a,
Lemma 3.3.9], for as < ¢ < a; we must have m = —a; — £, so it only remains to see
that the congruence condition also holds. If ¢ < “2—1, this follows from Case I of the
proof of Lemma [Ass19a, Lemma 3.4.12]. The only remaining case is thus ¢ = H%,

which only occurs for a; odd, hence a; > 3, so a; —as > 2kp. As seen from Case VI.2

of the proof, this last condition is enough to get the congruence condition. 0

2.2. Archimedean case. The local representation at the infinite place is a
generic irreducible admissible unitary representation 7 of GLy(R). Let 1 be the
additive character of R given by ¥ (z) = e*™. The lowest weight vector in the

Whittaker model with respect to ¢ is given by

(1.7) Wr(n(z)a(y)) = e x(y),



28 CHAPTER 1. SUP NORMS
where k is determined by the form of the representation . We shall use that for

y € R
(1.8) R(y) < [y ~cel 72T,
uniformly in y. To see this, let us examine the possibilities for 7.

% with

2.2.1. Principal series representations. If m = y1 H x2, where y; = sgn™:
0 < mg < my <1 integers and s1+ s € iR and s; — sy € iRU(—1,1) then the lowest
weight vector is given by

s1ts9o

sgn(y)™ |y~
Yl <Ksl—52—1 (2m|y|) + Sgn(y)Ksl—;2+1 (27T|y\)> if my # mo,

2

yﬁf(sl;s2 (27|y]) if my=mse

s1ts9o

2

ly

where K, is the K-Bessel function of index v. By [HMO06, Proposition 7.2], we have

the following estimate.
LEMMA 1.2.5. Let 0 > 0. For R(v) € (—0,0) we have

w7 i 0<u <14 Z|3(v),
K, (u) e 1 ’
u"ze™ df  u>1+ZS(v)].

In particular, taking o = % if m; = my and o = 1 otherwise, (1.8) follows in this

case.

2.2.2. Discrete series representations. If 7 is the unique irreducible subrepresenta-

% with 0 < mg < my <1 integers and s; +s9 € 1R

tion of x1 H xs, where y; = sgn™

and s; — So € Z~g, S| — So = my1 — mo + 1 mod 2, then the lowest weight vector is
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given by

sl+52 51—32+1

ky)=lyl 2y > (L+sgn(y))e ™,

and we see that it satisfies again the estimate (1.8).

3. Global computations

3.1. Notations. Let Ag denote the ring of adeles of Q and let ¢ be the unique
additive character of Ag that is unramified at each finite place and equals z + €%
at R. For any local object defined in Section 2, we use the subscript ,, to denote this

object defined over Q,. We also fix in all the sequel
(1.9) oo = SO4(R).

Let m = ®p<sm, be a unitary cuspidal automorphic representation of GLa(Ag) with
central character w,. Let N =[] p™ be the conductor of 7 and let C' =[] p® be
the conductor of w,. In particular C' | N. Let us introduce some notation to denote

respectively the set of primes for which Lemma 1.2.2 do or do not apply, namely
My My

(1.10) %:{p|N:cp>7}andgz{pHV:cpS?}.

We also denote by Sy the set of prime numbers dividing N, so that
Syn=HUZL.

Then according to Lemma 1.2.2, 7, is an irreducible principal series representation
for each prime p € #Z , and we have corresponding local exponents of conductors

ai(p) = ¢, and as(p) = n, — ¢,. Finally, for any set of primes 9, define ¥(%) to be
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the set of positive integers having all their prime divisors among 9°. We shall use the

following obvious result.

LEMMA 1.3.1. Let & be a finite set of primes. Then for all 0 < o < we have

> et ()

SEV(P) peEP

log(Q)

< ;,a and since the function

PROOF. Since 2 is the smallest prime we have — % s <

<. U

1
Rop — R, a— e S oD

5=« is increasing, for av in the said range we have

3.2. The Whittaker expansion. Let ¢ € m be an L*normalized newform.

Define the global Whittaker newform on GL2(Ag) by

It factors as

Ws(g) = cs H W (gp),

p<oo

where W, are as defined in the first two sections, and ¢, is a constant that satisfies

C¢>” H W, ||'reg

p<oo

with

L(2) W, 2
T Wl = 1A T] 22

p<oo p<oo

see [MV10, Lemma 2.2.3]. In turn, we have the Whittaker expansion

(1.11) d(9) =Y Wylala)g) =cs >_ [ Wilala)gy)

qeQx qeQx p<oo
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for any g € GLa(Ag). Our strategy to bound ||¢||~ will be to bound for all ¢

sl D T IWalal@)gs)l = lo(g)l,

qeQ* p<oo
that is, we do not take advantage of the potential oscillations in the Whittaker
expansion. First, we give a bound for the constant ¢, appearing here. By [HL94| we
have
L(m, Ad,1) > N

For p unramified,

GWolla

() Ly(m Ad, 1) L

For p ramified, we have
Ly(m,Ad,1) <x1and 1 < [|[W,|]. <2

(see [Sah16, Lemma 2.16]). Consequently, |cs| << N¢. We shall also use that for any

integer n coprime to N, we have
(1.12) [T W (a(n) = n~2x(n),
pIN
where \;(n) is the n-th coefficient of the finite part of the L-function attached to .

3.3. Generating domains. Using invariances of automorphic forms, we can
restrict their argument to lie in some convenient set of representatives. We first

describe such generating domains.

DEFINITION 1.3.1. We denote by Dy be the set of g € GL2(Ag) such that
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® goo = n(x)a(y) for some z € R and y > ‘/73,
o g,=1forall pf N,
e g, € GLy(Z,) for all p.

LEMMA 1.3.2. LetI' =[], Ty be a subgroup of GLa(Ag) such that I'c = SO2(R),
for all finite p the group I', is an open subgroup of GLy(Z,) whose image by the
determinant map is Z,, and ', = GLy(Z,) for p t N. Then the subset Dy of

GLa(Ag) given by Definition 1.3.1 contains representatives of each double coset of
Z(Ag) GL2(Q)\ GLa(Ag)/T"

PROOF. By the strong approximation theorem, any g € GLy(Ag) can be written
as geovk With go € GL3 (R), v € GLy(Q), and k € I'. Multiplying on the left by v~*
and on the right by £~!, we can first assume that g, = 1 for all finite p. Next, let
Z = goo - 1. Then there is 0 € SLy(Z) such that (o - z) > %g After multiplying on
the left by ¢ and on the right by prN o~ !, we can instead assume that g, = 1 for all
p1 N, g, € GLo(Z,) for p | N, and J(geoz) > ‘/75 Finally, multiplying by an element

of SO2(R), we can assume that g, is of the form n(x)a(y) with y > @ O

Instead of evaluating our newform ¢ on elements of our generating domain Dy,

we shall rather use it with a certain translate of ¢, the “balanced newform”.

LEMMA 1.3.3. Consider the subgroup K of GLy(Ag) defined by
KO =T, [[ KV (p™z,),
p<oo

where the local subgroups T, and KW (p™Z,) are defined in (1.9) and (1.3) respec-

twely. For each prime p dividing N, let e, be an integer with 0 < e, < n,. Let Dy be
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the subset of GLa(Ag) given by Definition 1.3.1. Then the set

9]\[ H a(pep) C GL2(AQ)

p|N

contains representatives of each double coset of Z(Ag) GLy(Q)\ GLa(Ag)/KW.

PROOF. Let
1+p™Z, p*Z
T, = GLy(Z,) N g l,
pnp—Epr Zp
and I' = [[ . T Let g € GLa(Ag). By Lemma 1.3.2 there exists g; € Dy such

that we have the following equality of double cosets
A)CGL,(Q H Z(A) GLy(Q)gal.

In particular, for each p | N there exists k, € I', such that

A)GLy(Q H (A) GLy(Q)gak,.
Now if
14 ap™ bpr
P — )
cptrTer d
then
1+ap™ b
a(p™)kpa(p) = EW(p,)
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Hence writing

Z(A) GL2(Q)g = Z(A) GL2(Q) g4 H kpa(p®)
pIN
Z(A) GLy(Q)(ga [ [ alp)) [ [ alp™ ) kpa(p®™),
p|N pIN

we find that the double coset Z(A) GLy(Q)gK™ contains the element g, [Tvalp™),
which belongs to Dy [, a(p™). O

By Lemma 1.3.3, we can restrict ourselves to evaluate [¢| on Dy [], a(p®), where
the exponents e, may be conveniently chosen. Of course, this is equivalent to evaluate
its right translate by [[, a(p®) on Dy. Now, by Lemma 1.2.1 of Section 2, we can
describe this generating domain in terms of the explicit representatives corresponding

to each local double coset decomposition.

LEMMA 1.3.4. Let Dy be the subset of GLa(Aqg) given by Definition 1.3.1. Let
9 € Dn 11, nalp™) C GLa(Aq). Then g satisfies the following.

® g = n(x)a(y) for some xz € R and y > ‘/75,
e g, =1 forallpt N,
o Letp | N. If l(g,) < e, then m(g,) = —e,, and if (g,) > e, then m(g,) =

—20(g,) + ep, where we have used notations of Definition 1.2.1.
PRrooF. This follows immediately from Definition 1.3.1 and Lemma 1.2.1. U

In particular the (optimal) choice e, = [Z2] for all p | N, together with Re-

mark 1.2.2, motivates the following definition.
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DEFINITION 1.3.2. Let Fy be the set of g € GLy(Ag) such that

® g = n(z)a(y) for some z € R and y > \/757

o g,=1forallpt N,

e for all p | N we have ((g,) < “2 and m(g,) € {—[2], —[2]}.

REMARK 1.3.1. Note that for p | N we do not require g, € GLy(Z,)a(p®), but

only the stated conditions about ¢(g,) and m(g,).

Finally, let us state the quantity we shall actually bound.

LEMMA 1.3.5. Recall notations from § 3.1. For each S C Sy, define
s 1
*9)=0|9g]]
pes D"

Then

1.13 o = (9.
(1.13) ol gg};gselfy%\qﬁ (9)]

Moreover, for each subset S C Sy and for every g € Fn we have

(1.14)

65(9)] < leol D | TT W2 (@@ gmo o tan) [T Wala(@) Woe(al@)n(@)a(y)))]

qeQ* |p|N ptN

where sz =W, ifp &5, and Wps s the normalized local newform attached to the

contragradient 7, if p € S.
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PRrROOF. For each p | N, set e, = [2]. For convenience, also set e/, = [%2]. Then

by Lemma 1.3.3, we have

[6]l0 = sup 9(9)]

9€DN [y a(pP)

We now prove that

(1.15) sup |6(9)| < max sup [¢°(g)|.
9EDN [y n alp?) S gesn

By Lemma 1.3.4 we have

(1.16) s [olg)] < sup o | n(x)ew) [T ov
9EDN I, v a(p®P) zeR,y2§ p|N
m(gp)=—ep if Z(gp)gr%p

m(gp)=—2¢(gp)+ep otherwise

By (1.6) we have

_ ep—Lp, —1 —Lp ., ,—1
9—2tp+ep lp,vp 9 _n(_pp v )Z(_p v )g_elpvnp_gpa—’/?

_ Tip
I/p Y%

Using this identity at each prime belonging to the set S of primes p satisfying
((gp) > “ in the right hand side of (1.16) we obtain by right- K™ invariance of ¢

(1.17) sup ¢ | n(x)ay) [[ o || < M(o)

V3
zERYy>5> p|N

m(gp)=—ep if e(gp)ﬁnjp

m(gp)=—2¢(gp)+ep otherwise
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where we have set

M(¢) = max sup % | n(x)a(y) [T 9
SCSn xER,yZ? p‘N
m(gp)=—ep if p€S
m(gp)=—e;, otherwise

E(QP)S%D

Combining (1.16), (1.17) and the definition of .7y, we obtain the bound (1.15). From

definition, it is clear that

s = Inax su S
9]l > e sup [6°(g)

so (1.13) follows.

The second claim follows from the Whittaker expansion (1.11). Observe that by
Remark 1.2.2,

Wi | 9 = ‘Wp(gp”»
p"r

where W, is the normalized local newform attached to the contragradient 7,. The
identity

a(q)n(x) = n(gr)al(q)
and the left invariance of the modulus of the local Whittaker newforms by NZ
give (1.14). O

As we shall be interested in the support of the Whittaker expansion, we make now

the following definition.
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DEFINITION 1.3.3. Keep notation as in Lemma 1.3.5. For every S C Sy and

g € In we define Supp(g; S) as the set of rational numbers ¢ € Q* such that

LT W (@(@)gmay).etap o) T T Wolala)) Woe(alg)n(z)a(y)) # 0.

p|N ptN

NOTATION 1.3.1. From now on we fix g € Fy and S C Sy (in the notation of
§ 3.1 and Definition 1.3.2), and we define for each p | N, £, = ((g,), €, = —m(g,),
/

€, = np — €y, and v, = v(g,). We then define the following integers

L= Hp‘prp, Ny =TLp7, Ny= pre;,
as well as the sets of primes

H_ = {ped:l,<ap)},
(1.18) H-={peX l,=ap)},
H,={peI: l,>a(p)}

where as(p) = n, — ¢, is the exponent of the conductor of the local character x, (note
that in the case where N = C, we have #_ = @ and #_ coincides with the set of
primes dividing N and not dividing L). If M = Hp p™ is any integer, we may use

the notation
= H pmp
pEW*

for x € {+,—, =}
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3.4. Sup norms: maximally ramified case. In this subsection, we are assum-
ing N = C' and we prove Theorem 1.1.1 in this special case, as the proof becomes

simpler. We first determine the support of the “Whittaker expansion” (1.14).
LEMMA 1.3.6. Recall Notation 1.5.1. There is a map

\I](%z) {17"' >L}

Sty

such that

S
N> L

Supp(g; S) C { (ts+jL):s € V(H-),] € Z with ts+ jL coprime to N} )

PROOF. Let ¢ = [[,p% € Q. Assume g € Supp(g; S). First, if p{ N then we
must have ¢, > 0. So sgn(q) prN p? is an integer. We shall see that it satisfies a
certain congruence condition. Consider now a prime p | N, if ¢ = p%u € Q* with
u e Z;, we have

1 1

(119> a(q>g*€pvép»l’p = ng*Gp,gp,Vp“_l = g‘Ipffpvep:Vpquq_l
U qp_qp

By Lemma 1.2.3 (applied either to m, if p € S or to 7, if p € 5), if £, = 0 then
Qp — €p = —Nyp, 80 q, > —¢,. It follows that
s = Hpq"“; e V(x).

p|N
ptL
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On the other hand, if £, > 0 then ¢, — €, = —n, — {;, so q, = —€, — £,. Now fix a

prime po | L (so ¢, > 0), and write

Sgl’l H pfho — Sgn H p‘Ip H p‘h)“‘ep

p|N
ptL

_ sgn Hpqp Hpqure H pqure »lp

p|N p|L
ptL DPFPo

=sgu(q) [[ p* [T p% [T o7

P#Po p|N p|L
ptL DP#£Po

= (™) | TIo* I

p|N p|L
ptL P#Po

By Lemma 1.2.3 and equality (1.19), p, *°¢ satisfies a certain congruence condition

modulo p#0Z,,. In addition [T, p 1 p|L Pt is clearly in L, So we just showed
piL PFpo

that the integer sgn(q)s HMN p? satisfies a certain congruence condition modulo pf;po
Applying the same reasoning with each prime dividing L, we obtain by the Chinese

remainder theorem a condition of the type
sgn(q)s Hpqp =ro mod L.
Since in addition L and s are coprime, we can write

(1.20) sgn(q) Hpqp =ts+jL
pIN
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for some integer t; = ros~! mod L, and j ranging over Z. Finally,

g =sgn(q) [[p ZHpq”Hpq”— 7 (ts+5L).

p|L p|N
plL

We now compute the size of each term in “the Whittaker expansion” (1.14).

LEMMA 1.3.7. Keep notations from Notation 1.3.1 and Lemma 1.53.5. Let q =

~r(ts+JL) as in Lemma 1.3.6. Then we have

[T W5 (@(@)9-cy ) [ Wolale))| = L2s™2]t, + GLI72 [Aa(Jts + JLI)]
N

p|N

PROOF. For ¢ of this form, using (1.20) and (1.12), we have
[[Wela(@) = []Walt. +5L)
PN ptN
ol .
= ([ts + 7LD 2 Ax(lts + 5 L),

and Lemma 1.2.3 (observe that the contragradient representation 7, satisfies the

same hypothesis as 7,) together with equality (1.19) give

H Wps<a(q)g*€pvepvljp) = H Wl;g(ng’_epvgpﬂ’ppqpq_l)

pIN p|N

1 dp—¢eptn 1 1
= [ Hp_p g b = 287 2.
£p=0
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O

By Combining Lemmas 1.3.6 and 1.3.7 the “Whittaker expansion” (1.14) is thus

bounded above by

1 ts+jJL
D S S L

seU(7-) JEZL

Using estimate (1.8), we first evaluate the j-sum as follows:

R § ts +]L
ts + L 2+5+6/€ (—S )
jEZZ! JL| N Y
SY - =L 454 |t5 +]L|
< (M) Z |ts + jL| 2 exp ((—27T+ E)Wsy
JEZ
SY - —Li5+te ‘t’
— 1 tL|™2 -2 — dt
<(3) (04 [renrtren ((2n s opls
NyL\* Ny \Z [ NoL\°
<(2) (=) (%)
sy Lsy sY

Altogether, using Lemma 1.3.1 and the fact that A“(") < N¢ for any fixed A > 0

we get

NoL\ € N\ 2t? L
6(9)] < ¢ (%) (Lé +L° (f) ) < N* (L% + Ny N5>

since ¢, < N¢, y > ‘/73 and NoL < N. This establishes Theorem 1.1.1 when N = C'

because we have L < Nz and N, < Hp|Np[nTp1.

3.5. Sup norms: general ramification. Finally, let us address the necessary

modifications when we do not make any assumption about the conductor of y. The
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analysis of the local Whittaker newform W), is similar, but with more cases to take into
account, depending on which of the sets (1.10) the prime p belongs. In particular, it
still holds that for all p € # we have m, = x1 B x2, but the exponents as(p) = n, — ¢,
of the conductor of the local characters ys may not all equal zero. We thus also get a
Whittaker expansion supported on arithmetic progressions dictated by the primes
at which the central character is highly ramified. The rest of our argument differs
from the maximally ramified case, as we rather use strong L?-averages of the local
newforms, in the spirit of [Sah17], instead of the local bounds. Of course, in the
maximally ramified case, these L?-averages follow immediately from the computation
of the support of the local newform W, and the local bound, so the difference on the

argument is mainly expository.

We first determine the support of the “Whittaker expansion” (1.14) in this more

general case.

LEMMA 1.3.8. Recall Notation 1.5.1. There is a map

LTC*
V() x V(&) — {1,~-- e }
(s,u) — tgy
such that
N+ LTCT ,
+Ot+
with te, + 7 N coprime to N} .
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REMARK 1.3.2. It is immediate by unravelling the definitions that Ljﬁ* 15 an

integer.

PRrROOF. The reasoning is quite similar to the proof of Lemma 1.3.6, but we
use [Sah17, Proposition 2.10] for the primes in & and Lemma 1.2.4 instead of
Lemma 1.2.3 for those primes in #. Fix ¢ = [[ p®™ € Supp(g; S). As before,
sgn(q) Hp,[N p? is an integer and we shall see it satisfies some congruence condition. If
p € - or p € & then examination of either Lemma 1.2.4 or [Sah17, Proposition 2.10]
gives g, > —¢,. So

I o evzur).

PELUH -

In addition Lemma 1.2.4 gives that for p € #_ we have ¢, = —¢,, and for p € Z,

we have ¢, =€, — £, — a1(p). Fix py € #; and write

sgn(q)su Hpqp = sgn(q Hpqp H Pt
PIN

PEL UK —
— sgn(q Hp‘“’ [T pos I oot [T pooteo-toae
pEL U - PEKH pPEH -
P#Po
’ ¢ _
= sgn(q) H pr H pr H plotar®
p#po  PELUH_UF-  pEHy
PFPO

By Lemma 1.2.4 the rational number sgn(q) [],_,, p% satisfies a congruence condi-

tion modulo p‘ro _“2(1’0)Zpo. Then using the Chinese remainder theorem we see that

sgn(q)su HmN p% is an integer satisfying a congruence condition modulo L;:,T. It
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follows that we can write

LHC
sen(q) [ [ = to + 5757
PIN

Finally,

g=sgn(a) [[»* TI »* [] o [[ po @
PIN

PELUI -~ PEH_ PEK y

(t N ,L*C’*) su 1 N
= su T ] o N— N— .
NT ) Ty P¥N; Ny LTC+

O

If we were now to proceed following the exact same strategy as in the maximally
ramified case, then we would get a worse estimate because of weaker local bounds for
the local newform in the case £, = % (see [Ass19b, Lemma 5.10]). Instead, we rely

on L2-averages of the local newvectors established by Saha [Sah17]. To this end, we

make first the following trivial lemma.

LEMMA 1.3.9. Suppose (an)nez, (bn)nez are two families of positive real numbers
such that ), _, anb, converges absolutely, and a,, is periodic with period T. Let M

be such that

N
L
S
INA
=

3
I
o

Then we have

1
T-1 2
> anb, <MY <Z bzmj) .
nez keZ \j=0

Imeaning the partial sums > ney lanby| indexed by finite sets J C Z are uniformly bounded.
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PROOF. We regroup the series in sums of length 7" and we apply Cauchy-Schwarz

for each of these. O

Next, we express the “Whittaker expansion” (1.14) so as to be tackled by previous

lemma.

LEMMA 1.3.10. Recall Notation 1.3.1. Then

C@I<lel S Y anbn,

SEV(H=) ueV(¥) neZ

where a, is periodic with period L and satisfies

L—-1
(1.21) > a2 < NL(su)

n=0
and

g |’n|7%

Nt suny
An (1) (m)‘ﬂt mod LECE -

PROOF. The claim will follow from the “Whittaker expansion” (1.14)

WS(Q)‘ < ’C¢>| Z HWps<ng7€pyep7Vpquq_l) HWp(“(Q))WOO<G(Q)n(x)a(y))) )
PIN

qeQx |pIN

together with (1.7), (1.12) and Lemma 1.3.8 once we have shown that the sequence

N7Tsun
S
HW ( (N2L+C+)g—5p,€p,up>

p|N

defined by
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satisfies the desired properties. For each p | N, let us distinguish cases depending on

which of the sets defined in (1.10) and (1.18) contains p. For all v € Z; we have

WpS (a V) Gup—np,ty *) ifpe &
S N suw W (a(v) g-nyi,s) i p € -
W Ny L+C+ 9—ep.tp,vp ; .
W (a V) Gsp—np,ty *) ifpe
Wf (a V) G—ty—ai(p *) iftpe #,,

where each * is independent of v. By [Sah17, Proposition 2.10], we then get

(

pFifpe P
N7 suv 2 lifpe
; X
/ ZX W ( <N2L+C+> g—epjmyp) d T4 .
. p 2 if pe
lifpe ..
\

Now by [Sah17, Remark 2.12], for each p | N and each fixed s € U(#.) and

u € V(Z), the map on Z) given by

Ntsuv
S
oo 93 (o (e ) o-oem )|

is U,(¢,)-invariant. Hence by the Chinese remainder theorem, these give rise to a

N7t sur
s
0 (o (R i)

map on (Z/LZ)™ given by

(r mod L) H

p|N
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and by Lemma 1.3.8, if a,, # 0 then n is coprime to N, thus the sum (1.21) is just

N+
Z H (CL (ML——QTJJCZ-) gEPvep:Vp)

2

re(Z/LZ)* pIN
L () )
< NEL(su)_%,
where ¢ is Euler’s totient. 0

By combining Lemmas 1.3.9 and 1.3.10 it follows

(1.22) p(g)| < N°Lz Y s7i Z ZS,S

SEW () uE (L keZ

where

L—1
(1.23) Sk=> bl
§=0
and b, is defined in Lemma 1.3.10.

LEMMA 1.3.11. For all k > 1 the sum (1.23) satisfies

N+ N \° NtsuyL
120 —1426+¢ _
Sk<<L+C+ <suy> k exp WN2L+C+]€ ,

and the same estimate holds for k < —2 upon replacing k with —k — 1 in the right
hand side. Finally,

Ny Nt [Ny L*C+\ 27
So, S— 1 .
001 <% (suy) ( UNEYer ( N+tsuy
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PROOF. For those intervals [kL, (k4 1) L] not containing zero we use estimate (1.8)

Ltc+t
N+

then we bound Sj by the number of terms multiplied by the largest term. Since

divides L, the congruence condition on n = Lk + j modulo LX,T is equivalent to the

same congruence condition on j. We thus get, for £ > 1

N+ N \° NtsuyL
L26 v ]{3_1+26+6 Pty A I
Sk < L+C* <suy> P 7T]\/2L+C+

For k = 0 we have
N\ 8 L4+ L2t
Sy K <%> <1+/0 (tsu +t Nt )
N7 suy LtC+
X exp (—ﬂ'm <t5u +1 Nt )> dt)
N \¢ N+t [N, LtO+\ 2+
< (@) <H_L+C”r ( N+tsuy ) )

The analogous results for k£ < 0 follow by changing k£ to —k — 1 and changing ¢, ,, to

Ltc+t
e 0

By a similar argument as in § 3.4, Lemma 1.3.11 implies

1 N \° Nt 3 NoLtCo+ e N, i N,L+tC+ 5+e
Z S <\ o~ LR e + T + :
pyt suy L+C N+tsuy Lsuy N+tsuy

Substituting this into (1.22) and using Lemma 1.3.1 we obtain

9(9)] < N7 (L¥ + Nf ) .

Lemma 1.3.5 together with the results from Section 3.4 and 3.5 finishes the proof of
Theorem 1.1.1.
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CHAPTER 2

A relative trace formula approach to the Kuznetsov formula

for GSp,

1. Introduction

In this chapter we develop a Kuznetsov formula for the group GSp,. To motivate
our results, we first recall the Kuznetsov formula for GL,, an identity relating spectral
information about the quotient space I'\H (where I' is a congruence subgroup) to

some arithmetic input.

For arbitrarily chosen nonzero integers n and m and any reasonable test function h,

the spectral side involves the quantity

(2.1) h(tu)am(w)an(w),

where u ranges over eigenfunctions of the Laplace operator involved in the spectral
decomposition of L*(T'\H), a,,(u) is the m-th Fourier coefficient of u, and ¢, is the
corresponding spectral parameter. More precisely, the spectrum of L*(T'\H) can be
described as the direct sum of the discrete spectrum and the continuous spectrum. The
discrete spectrum is the direct sum of 1-dimensional subspaces spanned by cuspidal
Maaf forms (the cuspidal spectrum) plus the constant function (the residual spectrum).

The continuous spectrum is a direct integral of 1-dimensional subspaces spanned by

51
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the Eisenstein series. The spectral side of the Kuznetsov formula correspondingly
splits as a discrete sum over Maafl forms plus a continuous integral over Eisenstein

series.

The arithmetic-geometric side is a sum of two contributions, that may be seen
as the contributions from the two elements of the Weyl group of GLs. The identity
contribution is given by the delta symbol 9, ,,, times the integral of the spectral test
function h against the spectral measure % tanh(rwt)dt. For this reason, the Kuznetsov
formula may be viewed as a result of quasi-orthogonality for the Fourier coefficients
anm(+) and a,(-), provided the remaining contribution can be controlled. The latter
consists of a sum of Kloosterman sums weighted by some integral transform of the

test function h, involving Bessel functions.

Applications of the Kuznetsov formula involve using known results about any of
the two sides to derive information about the other side. On one hand, the flexibility
allowed by the choice of the test function h enables one to use known bounds about
the Kloosterman sums to study the distribution of the discrete spectrum and the
size of the Fourier coefficients of Maafl forms. On the other hand, understanding the
Fourier coefficients of Maafl forms as well as the integral transform appearing on the

geometric side yields strong bounds for sums of Kloosterman sums.

Recently, Kuznetsov formulae have been developed by Blomer and Buttcane for
GLj3 (see [Blo13,But13, But16, But19, But20b, But21, But22, BB19, BBM17]),
with similar applications as described above. It would thus be interesting to establish

the corresponding formulae for other groups.
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In the classical proof of the GLy Kuznetsov formula, one computes the inner
product of two Poincaré series in two different ways, one involving the spectral
decomposition of L*(T'\H), and the other one by computing the Fourier coefficients
of the Poincaré series and unfolding. This gives a “pre-Kuznetsov formula”, that one
then proceeds to integrate against the test function h, obtaining on the geometric

side the integral transforms of A mentioned above.

Another approach, that one may call the relative trace formula approach to the
Kuznetsov formula, builds upon the relative trace formula that was introduced by
Jacquet [JL85]. In the case of GLs, the relative trace formula approach to the
Kuznetsov formula is apparently based on unpublished work of Zagier, detailed
in [Joy90]. This approach is developed in the adelic framework in [KL13] for the

congruence subgroup I' = I'1(N). It proceeds by integrating an automorphic kernel

Ki(zy)= > flz '),

’YGPGLQ(Q)

where z,y € GLy(A) and f : GLy(A) — C is a suitable test function. The spectral
expansion of the kernel will then involve the quantity f (tu)u(x)@, where u ranges
over the eigenfunctions involved in the spectral decomposition of L*(T'(N)\H), ¢, is
the spectral parameter of u, and f is the spherical transform of f. Thus integrating
K¢(z,y) against a suitable character on U x U, where U = [! %], one gets the
quantity (2.1) with h = f. On the other hand, using the Bruhat decomposition for
PGL2(Q), one can decompose the integral over U x U as a sum over elements of
the Weyl group and over diagonal matrices in PGLy(Q) of some orbital integrals. In

the case of the identity element, at most one diagonal matrix will have a non-zero
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contribution, which will turn out to be a delta symbol times some integral transform
of the function f. In the case of the longest element in the Weyl group, each positive
integer in NZ will have a nonzero contribution, given by a Kloosterman sum times
a second kind of integral transform of f. A more refined version is then obtained
by taking the Mellin transform of the primitive formula obtained. Note that in this
approach, one gets on the geometric side some integral transforms of the function

f, hence one has to do some extra work to relate these to the test function h = f

appearing in the spectral side.

A couple of remarks are in order about the choice of f. Firstly, the spectral expan-
sion of the kernel involves the spectral decomposition of L?(R.qGLy(Q)\ GLa(A))
rather than L*(T'\H). By restricting f to be left and right K,-invariant (where
Ko, = S0,), only right- K -invariant automorphic forms ¢ (thus corresponding to
adelization of functions on the homogeneous space H = SLy(R)/K ) will show up in
the spectral expansion of the kernel, but other choices are possible. Also one may
choose the test function f at unramified places so as to get a final formula that include

the Hecke eigenvalues of a fixed Hecke operator of index coprime to the level N.

Our plan is to implement the relative trace formula approach in the case of GSp,.
In contrast to the case of GLs, there is more than one non-conjugate unipotent
subgroups U. Choosing U to be the unipotent radical of the Borel subgroup (that is
the minimal parabolic subgroup) will yield Whittaker coefficients of the automorphic
forms involved (instead of the Fourier coeflicients). The Whittaker coefficients have a
“multiplicity one” property, which ensures that the global Whittaker coefficients factor

into a product of local coefficients. These local Whittaker coefficients can be written
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down in terms of local Satake parameters, which is important for applications. Also
in contrast to the case of GLy, not every automorphic form has non-identically zero
Whittaker coefficients. For instance, Siegel modular forms give rise to automorphic
forms whose Whittaker coefficients vanish identically. Thus, only generic automorphic
forms (i.e, with non-identically zero Whittaker coefficients) will survive the integration

on U x U and contribute to the final formula.

In Section 2 below we introduce the group GSp, and the structure theory that
shall be needed. In Section 3, we introduce the basic representation-theoretic notions
and tools: in subsection 3.1 we introduce the Whittaker coefficients of automorphic
forms, that is the basic object which will appear in our relative trace formula. In
subsection 3.2 we introduce the automorphic kernel associated to a test function
f, on which the relative trace formula approach is based. This kernel induces a
certain global operator R(f), that factors as a tensor product of local operators. The
automorphic forms appearing in the spectral side of the relative trace formula range
over an orthonormal basis of eigenfunctions of R(f), plus an analogous continuous
contribution. The construction of this eigenbasis is done by studying the local
operators corresponding to R(f). This is the object of the following next two
subsections, where we discuss these local operators at the finite places and at the
Archimedean place respectively. As we explain there, the former are given by the
Hecke algebra while the latter amounts to the spherical transform. We also include
a discussion of the Whittaker function at the Archimedean place, and an integral
transform related to it, that will eventually appear in the geometric side of the
relative trace formula. In Section 4, we introduce the Eisenstein series involved in

the spectral expansion of the automorphic kernel, and we derive the spectral side
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of the relative trace formula in an explicit fashion. In Section 5, we deal with the
geometric side of the relative trace formula. In the first two subsections we introduce
the relevant orbital integrals and we study them globally. We then switch to a local
analysis. In subsection 5.3 we study the orbital integrals at the Archimedean place.
This involves the integral transform that was mentioned earlier, as well as a certain
interchange of integrals conjecture (that we will not need for our final application in
Chapter 3). The finite part of the orbital integrals — which gives rises to generalised
Kloosterman sums — is studied in subsection 5.4. While until that point we work
with a general congruence subgroup, in subsection 5.4 we fix a choice of congruence
subgroup (the Borel congruence subgroup) in order to write down explicitly the
corresponding Kloosterman sums. Other choices of congruence subgroups would
be possible, but we do not pursue this here. Finally, in Section 6 we assemble the
material from previous sections and we write down the Kuznetsov formula explicitly
(in Theorem 2.6.1) by equating the spectral side of the relative trace formula to the

geometric side.

Let us briefly sketch some similarities and differences with the Kuznetsov formula
for GL3. These groups both have rank 2, but GL3 has root system of type Ay and
GSp, has root system of type C5. On the spectral side, the continuous contribution is
in both cases given on the one hand by minimal Eisenstein series, (that is, attached to
the minimal parabolic subgroup), and on the other hand by Eisenstein series induced
from non-minimal parabolic subgroups by Maafl forms on GLy. However, in the case
of GLj3, the two non-minimal proper standard parabolic subgroup are associated,
hence by Langlands theory their Eisenstein series are essentially the same. On the

other hand, for GSp,, we have two distinct non-associated such parabolic subgroups,
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giving rise to two distinct kinds of Eisenstein series. As for as the geometric side,
the Weyl group of GL3 has six elements, while the Weyl group of GSp, has eight.
However, it seems interesting to notice that in both case, only the identity element
and the longest three elements in the Weyl group have a non-zero contribution, thus

eventually giving in total four distinct terms.

Finally, let us mention that Siu Hang Man has independently derived a Kuznetsov
formula for Sp, using the more classical technique of computing the inner product of
Poincaré series, and has derived some applications towards the Ramanujan Conjec-
ture [SHM21]. However, because the techniques employed and the final formulae
differ, the author believes that our works are complementary rather than redundant.
Indeed, the flexibility offered by the adelic framework enables us to treat the test
function differently at each place. As a result, by choosing an appropriate test
function at finite places, our formula might incorporate the eigenvalues of an arbitrary
Hecke operator. Furthermore, at the Archimedean place, we make use of two deep
theorems of functional analysis on real reductive groups (namely Harish-Chandra
inversion theorem and Wallach’s Whittaker inversion theorem) in order to produce
an arbitrary Paley-Wiener test function on the spectral side, and relate it explicitly
to its transform appearing on the arithmetic side. As a last point, working with GSp,

instead of Sp, enables us to work with a central character.
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2. Generalities

DEFINITION 2.2.1. The general symplectic group of degree 2 over a field F is the
group
GSp,(F) = {g € Maty(F) : 3u € F*, "glg = pul},

where J = [_12 12] and Tg denotes the transpose matrix of g.

Note that some authors use different realizations of GSp,, for instance the realiza-
tion used in [RS07] (to which we refer, along with [RS16], for expository details)
is conjugated in GL, to ours by the matrix {1 1 1 ] From now on we denote
G = GSp,. The scalar p = u(g) in the definition is cialled the multiplier system.

T

The Cartan involution of G is given by 6(g) = "g~! = u(g)~'JgJ~!. The centre of

G consists of all the invertible scalar matrices. We fix a maximal torus in G(F)

T(IF):{[ - 1:x,y,t€]1?x}.
ty*1

DEFINITION 2.2.2. The symplectic group of degree 2 over a field F is the group

Spy(F) = {g € G(F) : p(g) = 1}.

The centre of Sp, is {1}, and a maximal torus in Sp,(F) is given by

- }:x,yEFX}.
yfl

xT

AE) =T(E) n8p(F) = { |

We denote by a the Lie algebra of A(R).
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2.1. Weyl group. Let N(T') be the normalizer of T. The Weyl group 2 =

1 1
N(T)/T is generated by (the images of) s; = [1 1] and sy = [_1 ! ], and
1

1
consists of the (images of the) eight elements

1 1
_ 1 _ |1
1,51, 59,518 = [ 1] y 8281 = [ -1 } )
-1 1

1
-1 1 1,(8182)2 = J

1
_ 1 _
518251 = [ 1 ] , 825182 = [
-1 -1

2.2. Compact subgroups. A choice of maximal compact subgroup of G(R) is
given by the set K| of fixed points of the Cartan involution . An easy computation

shows
1
Ky= K. U { 1 ]Koo,
-1
where
Ko={|%8]:A"TA+B'B=1,,A"B=B"A}.

The condition

ATA+B"'B=1,

ATB=BTA

is equivalent to A +iB € U(2), hence K is isomorphic to U(2).

For each prime p we also consider a (compact open) congruence subgroup I'), C
G(Z,), with the properties that I', = G(Z,) for all but finitely many p and the
multiplier system p is surjective from I to Z; for all p. This implies we have the

strong approximation: setting I' = K Hp I',, we have



60 CHAPTER 2. KUZNETSOV FORMULA
where G(R)° is the connected component of the identity and A is the ring of adeles
of Q. Moreover we have the Iwasawa decomposition G(A) = P(A)K for all
standard parabolic subgroups P, where K = K [[, G(Z,).

2.3. Parabolic subgroups. Parabolic subgroups are subgroups such that G//P
is a projective variety. Given a minimal parabolic subgroup F;, standard parabolic
subgroups (with respect to P,) are those parabolic subgroups that contain Fy. If
P is a standard parabolic subgroup defined over Q, the Levi decomposition of
P is a semidirect product P = NpMp where Mp is a reductive subgroup and Np
is a normal unipotent subgroup. We give here the three non-trivial standard (with

respect to our choice of Py = B) parabolic subgroups and their Levi decompositions.

2.3.1. Borel subgroup. The Borel subgroup is the minimal standard parabolic
subgroup. It is given by
B=|"rii]nGsp,
and has Levi decomposition B = UT = TU, where

U={u(z,a,bc):abc,xeF},

where
1 ca—czx 1 1 c ) a—czx
_ 1 b _ |x1 z 1 a—cxr b—x(a—czx
u(z,a,bc)=|*1¢ b | = 1 —a ) (_x ).
1 1 1

We have the Bruhat decomposition

G = HBJB = ]_[ UTaoU.

geN ge



2. GENERALITIES 61
For each element o of the Weyl group, define U, = UNoUo ™!, and U, = UNo 'Us L.
Then we have U = U,U, = U,U, and U, NU, = {1}, and the Bruhat decomposition
can be written

G=1]U,ToU =] UToU,-.

oce oeq

We write the Iwasawa decomposition for Sp,(R) as follows.

DEFINITION 2.2.3. For every g € Sp,(R) there is a unique element A(g) € a, such
that
g € Uexp(A(g)) Koo

2.3.2. Klingen subgroup. The Klingen subgroup is
Pk = | 1711 nGsp,.

It has Levi decomposition Px = Ng Mg, where

1 Y
NK:U82:{|:x1ly—zx:|7xuyaz€F}
1

and
a b
M= {0 | rera—aeqey 2o},
t=1s

a

b
We have Mg ~ GLy x GL1, and if m = {C Ly } € Mgk and n € Ni we define

t—1§
Projit?(nm) = Proji-?(mn) = [¢ 5]

Projgzl(nm) = Projg’il(mn) =t.

ThecentreofMKisAK:{{ b ],t,uGFX}.
t=1u?
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2.3.3. Siegel subgroup. The Siegel subgroup is

* ¥ * ¥
* ¥ * ¥

}mGSM

It has Levi decomposition Pg = Ng Mg, where
1 zy

NS:U51:{|: 131’2],11:,y,Z€F}
1

Mg = {[*,7,-1], A € GLy(F),t € F*}.

and

We have Mg ~ GLy x GLq, and if m = [A tTAfl} € Mk and n € Ni we define
Projg'SL?(nm) = Projg';”(mn) =A
Projl(stl(nm) = Projg’SLl(mn) = u(m) =t.

The centre of Mg isAs:{{ P ],t,uG]FX}.
tu~1

2.4. Lie algebras and characters. Following Arthur [Art05], we parametrize
the characters of the Levi components of the parabolic subgroups by the duals of the
Lie algebras of their centres. We fix |- [ =[], |- |, the standard adelic absolute
value. Let P = MpNp be a standard parabolic subgroup, and Ap be the centre of

Mp. Then there is a surjective homomorphism
Hp : MP(A) — HOIIlz(X(Mp), ]R)
defined by

(2.2) (Hp(m)) (x) = log(|x(m)la),
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where we write X (H) for the group of homomorphisms (of algebraic groups) H — GL;
that are defined over Q. On the other hand, we may identify the vector space
Homy (X (Mp),R) with the Lie algebra ap & 3 of Ap(R) (where ap is the Lie algebra
of Ap(R)NSp,(R) and 3 is the Lie algebra of the centre). Denote by a}, the dual of ap,
by a3 (C) = aj ® C its complexification, and similarly for 3. If v € a3 (C) @ 3*(C),
then the map Mp(A) — C:

(2.3) m — exp((v, Hp(m))),

where (,) is the pairing between a}(C) @ 3*(C) and ap(C) @ 3(C), defines a character
of Mp(A). Moreover characters of Z(A) correspond to 3*(C) while characters that
are trivial on Z(A) correspond to a}(C). For convenience, when P = B we shall use

the notation af for ap(C).

3. Representations

The object of this section is to introduce the basic notions and tools of representa-
tion theory that shall be needed for the relative trace formula — essentially for the
spectral side. The first two subsections are global. In these, we introduce the objects
that are the central topic of this work: the notion of Whittaker coefficients, which is
what appear in the final formula, and the automorphic kernel, on which the whole
relative trace formula approach is built. As explained in the introduction, and as we
shall see in more details below, the automorphic kernel Ky induces a certain operator
R(f). This corresponds to turning the regular right representation of the group G(A)

into a representation of the algebra of “nice” functions f on G(A). By choosing f
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appropriately, we can ensure that the spectral expansion of the kernel K; — and
hence, in fine, the spectral side of the relative trace formula — can be expressed in an
orthonormal system consisting of functions that are fixed by our choice of compact
subgroup I', and that are moreover eigenfunctions of the operator R(f). This is the
object of the last two subsections, where we work locally, at the finite places and at

the Archimedean place respectively.

The test function f : G(A) — C that we will eventually choose has the property
that it factors as a product over all places f(g) = [], fu(g») where each f, is a
function on G(Q,). At unramified primes p, we can choose f, to correspond to an
arbitrary Hecke operator. As a result, our relative trace formula incorporates the
corresponding Hecke eigenvalues. As we explain in the last section, at v = oo, the
local eigenvalue is given by the so-called spherical transform f... Thus, the spherical
transform foo eventually plays the role of the test function on the spectral side. In
particular, we discuss what class of test functions foo we can generate subject to our
assumptions of f. We also include a discussion of the Whittaker function and of a
certain integral transform related to it, that eventually appears in the geometric side
of the trace formula. Our objective is to relate it as explicitly as possible to the test

function f., appearing on the spectral side.

3.1. Generic representations. In this subsection, we introduce the notion
of generic representations and of Whittaker coefficients. We briefly discuss the
factorisation property of the Whittaker coefficients. We also relate the genericity of a

representation of GSp, to that of its restriction to Sp, (and similarly with “genericity”
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replaced with “cuspidality”). This is for the later purpose of using a result of Kim

dealing with automorphic representations on Sp,.

3.1.1. Generic characters. A character ¢ of U(Q)\U(A) is said to be generic if
its differential is non-trivial on each of the eigenspaces n, corresponding to simple
roots a (where n is the Lie algebra of Ng = U). Explicitly, if 6 is the standard
additive character of A/Q and m = (m;, my) € (Q*)?, generic characters of U(A)

are given by

(2.4) . ({1 la }D — O(maz + msc).

Note that all generic characters may be obtained from each other by conjugation by

an element of 7'/7, as we have for all u € U(A)

(2.5) U (u) = 1 (ty utm)
where
(2.6) o= [ml Uy }

In the sequel we may occasionally just write ¢ for .

3.1.2. Whittaker coefficients and generic representations. If ¢ is any automorphic
form on G(A) and 1 a generic character, the ¢)-Whittaker coefficient of ¢ is by
definition the function % (¢) : G(A) — C given by

(2.7) Vi (0)(g) = / o, AR
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is called vy-generic if %, is not identically zero as a function of g. Changin
g P y g gimng

variable and using the left-G(Q)-invariance of ¢, note that we have

1

|m1 |

Vi (0)(8) = 71— Wi () (£ 8)-

In particular, ¢ is i-generic for some generic character ¢ if and only if it is -
generic for any generic character ¢, henceforth we shall just say ¢ is generic. An
irreducible automorphic representation (m, ;) is called generic if V. contains a generic
automorphic form ¢. Equivalently, every automorphic form in the space of a generic
irreducible automorphic representation 7 is generic, since otherwise the kernel of the
map ¢ — Wy, (¢) would be lead to a non-trivial invariant subspace of 7, contradicting

the irreducibility of .

If 7 is an irreducible generic automorphic representation, then the space of
Whittaker coefficients %,(¢) of elements ¢ € m provides a i-global Whittaker
model of 7, which is by definition a space W of functions w : G(A) — C of moderate
growth and satisfying w(ug) = ¥ (u)w(g) for all u € U(A), with the property that W,
is stable by right translation by G(A) and moreover the resulting representation is
isomorphic to 7. Now by the Flath tensor product theorem, the representation m
factors as a restricted tensor product m ~ @), 7, of local representations of m,. The
existence of a global Whittaker model for 7 then ensures that each local representation
T, also has a local Whittaker model W, (whose definition is a local analogue of
the global Whittaker model). Moreover, it is known that a local Whittaker model of

Ty, if it exists, is unique. It can be seen that this implies that if ¢ € 7 is a factorizable
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vector then we have for all g € G(A)

(2.8) Wy(9)(9) = [ [ 7:(00)(90)

where %, is an isomorphism between 7, and W, . Now if H, is a certain subgroup of
G(Q,) such that dim(7w™*) = 1 then since, by definition the action of G(Q,) on W,
is isomorphic to m,, it follows that W, contains a unique (up to scalar multiplication)
function that is right-invariant by H,. When the subgroup H, is implicit, we shall
loosely refer to this function as the local Whittaker function. In some cases,
the local Whittaker function can be determined by purely local methods (e.g. by
calculating the Jacquet integral at the Archimedean place, or by the Casselman-
Shalika at finite primes). The point is that if we assume moreover that ¢ is fixed
by the subgroup H,, then the component % (¢,) in (2.8) is then given (up to scalar
multiplication) by the corresponding Whittaker function. In particular, taking v = oo,

we can factor

Wy(9)(9) = Wro (9o0) Wiin(¢) (gtin)

where % is the Archimedean Whittaker function associated to the representation .,
(for which we have explicit formulae by work of Niwa [Niw95] and Ishii [Ish05], see
below) and the product over finite places %5, (¢) contains the arithmetic information.
Thus, in the final relative trace formula, we might view %, as being part of the
spectral test function. In fact, as it turns out, the test function arising in our final
formula in front of the “arithmetic part” of the Whittaker coefficients, as well as in

various integral transforms in the geometric side (at least under Conjecture 2.5.1), is

Foo V)W, ()T (12),
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where v, is the spectral parameter of 7., and ty,t; are two fixed diagonal matrices.

We refer to subsections 3.2 and 3.4 below for more details.

Let us now return to the definition of the Whittaker coefficients. Since U may as
well be viewed as the unipotent part of the minimal parabolic subgroup of Sp,, we
can define the Whittaker coefficients of automorphic forms ¢ on Sp, in the exact same
way as (2.7), except the argument is restricted to Sp,(A). This gives a similar notion
of generic automorphic forms and generic representations for Sp,. Later on, we shall
restrict automorphic forms on GSp, to Sp,. Let us briefly explain the corresponding

operations on automorphic representations.

DEFINITION 2.3.1. Let (m,V;) be an automorphic representation of GSp,(A)
realized by right translation on a subspace of L*(G(Q)Z(R)\G(A)). We define a
representation resm of Sp,(A) as the action of Sp,(A) on {¢’Sp4(A) D€ VW}. Itis a

quotient of the restriction Resm = 7[gp, (a)-

The representation resm does not have finite length in general. However, the

following shall be useful later on.

LEMMA 2.3.1. Let w be an irreducible automorphic representation m of G(A) that
occurs discretely in L*(G(Q)Z(R)\G(A)). Then 7 is generic if and only if res 7 has

a generic constituent.

PROOF. Fix a generic character . Note that for any automorphic form ¢ on G(A)
we have Wy (dlsp,) = (Wy(®)) |sp,- From this, it is clear that if res7 has a generic

constituent then 7 is generic. Let us show the converse. Assume no constituent of
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res  is generic, so for all ¢ € V.,

Vy(9)lspya) = 0-

Let ¢ € m and g € G(A). Then 7(g)¢ € V, hence

Wy (0)(8) = Wy(m(g)9)(1) = 0.

Thus 7 is not generic. O

We now prove a similar lemma for the restriction of non-cuspidal representations.

LEMMA 2.3.2. Let w be an irreducible automorphic representation ™ of G(A) that
occurs discretely in L*(G(Q)Z(R)\G(A)). Then 7 is non-cuspidal if and only if res

has no cuspidal constituent.

PROOF. Recall 7 is cuspidal if the constant term

Cr(6)(g) = /N oy )

of some (equivalently, any, since 7 is irreducible) function ¢ in the space of 7 vanishes
identically for all parabolic subgroup P. The exact same proof as Lemma 2.3.1,
replacing the generic character ) by 1 (and U by Np), shows that 7 is non-cuspidal
if and only if res 7 has a non-cuspidal component. However, we want to show that if
7 is non-cuspidal, then res 7 has no cuspidal component. So suppose that res 7 has
a cuspidal component. This means there is ¢ € V; such that (Cp(¢))|sp,a) = 0 for
all parabolic P. We want to show that Cp(¢) is identically zero on GSp,(A). Now

changing variables and using the left-invariance of ¢ under GSp,(Q), if t € T(Q)
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then we have Cp(¢)(tg) = Cy(g). In addition, if z € Z(A) then Cy(zg) = w.(z)Cy(g)-
Moreover, since 7 is an admissible representation, ¢ is right-invariant by GSp,(Z,)
for almost all prime p. It follows that there exists a finite set of places S such that
for any g € GSp,(A), if pu(g) € Q*(AX)*[[ 45 Z,; then Cp(¢)(g) = 0. The following

lemma concludes the proof. 0

LEMMA 2.3.3. Let S be any finite set of places containing co. We have

Q (A [ z; = A~
pES
PROOF. Let © € A*. By strong approximation, we have x = qu, with ¢ € Q*
and u € Ry Hp <o L. Now by the Chinese Remainders Theorem, there exists an
integer n > 0 such that for all finite p € S, we have nu, € (Z;)Z. For all p € S, let
€y € Z such that e;nu, € (Z;)*. Define ¢, = 1 for p € S. Then neu € (A*)?, and
x = (qn~")(new) [[ 56, " O
3.2. The basic kernel. In this subsection we introduce the basic kernel, and
we sketch how to use it to obtain a relative trace formula involving the Whittaker
coefficients of an orthonormal basis of I'-invariant automorphic forms. We first need
to introduce the space on which this kernel operates. Recall that we have fixed
G = GSp,, though most of the discussion is valid for arbitrary reductive algebraic

groups G over Q.

The group Z(Q)Z(R)\Z(A) is compact and it acts by right translation on the
Hilbert space L?(G(Q)Z(R)\G(A)). Since Z(Q)Z(R)\Z(A) is abelian, its irreducible
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representations are characters, thus by Peter-Weyl theorem we have
LGQZR\G(A)) = P LHGQZRN\G(A),w),

where the orthogonal direct sum ranges all characters of Z(A) that are trivial on
Z(Q)Z(R), and L*(G(Q)Z(R)\G(A),w) is the subspace of L*(G(Q)Z(R)\G(A)) of
functions ¢ : G(Q)Z(R)\G(A) — C satisfying

¢(gz) = w(z)9(g)

for all z € Z(A). Fix such a character w. If f: G(A) — C is a measurable function

that satisfies

o f(gz) =w(z)f(g) for all ze€ Z(A),

e f is compactly supported modulo Z(A),

then we define an operator R(f) on L*(G(Q)Z(R)\G(A),w) by

R(P)é(x) = /G 100w dy

where G denotes G/Z. By G(Q)-invariance of ¢, we have

R(f)é(x) = /G RERIEDY [ sty

Hence, setting for x,y € G(A)

(2.9) Ki(xy)= Y fx ),

7eG(Q)
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we have

(2.10) R(f)o(x) = / K (%, y)é(y) dy.

GQ\G(4)

Now let us argue informally to motivate the more technical actual reasoning which
will be done later. Let us pretend that K(x,.) belongs to L*(G(Q)Z(R)\G(A),w),
and that L?(G(Q)Z(R)\G(A),w) has a Hilbert orthonormal basis 9. Then we would

have

Kf(x,.) = Y (K(x.)|9)é.

PERB

But equation (2.10) says that (K;(x,.)|¢) = R(f)é(x). Thus we might expect a
spectral expansion of the kernel of the form
(2.11) Ky(x,y) =Y R(f)$(x)o(y).

HERB

If moreover each element ¢ of our basis & is an eigenfunction of the operator R(f),

say

(2.12) R(f)o = As(9)

then the above expansion becomes

Kr(xy) = > Ap(9)d(x)9(y)-

PER

Finally, integrating K ¢(xt;,yt2) on U x U against a character 1, (x)12(y) would then

yield a spectral equality involving the Whittaker coefficients and the eigenvalues
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Af(¢), of the form

1) [ Krlst Y Eal) dedy = 3007, ()0 T )

PERB

Note that in the last step we need (2.11) to hold not only in the L? sense, but

pointwise, as (U(Q)\U(A))? has measure zero.

Of course, L*(G(Q)Z(R)\G(A),w) does not have a Hilbert orthonormal basis,
due to the presence of continuous spectrum. However, after adding the proper
continuous contribution, a spectral expansion of the form (2.11) has been proved by
Arthur [Art78, pages 928-934|, building on the spectral decomposition of the space
L*(G(Q)Z(R)\G(A),w) by Langlands. We may then reduce from global to local as
follows. By general theory, we may choose automorphic forms ¢ appearing in the
spectral expansion of the kernel to be factorizable vectors ¢, ® ®p ¢p. If moreover
we take f factorizable, say f = fu [], fp, then the computation of R(f)¢ reduces to
the computation of the action of each local component f, on ¢,. By choosing the
local components f, appropriately, we can ensure that each ¢, is an eigenvector of
the operator corresponding to f,, so that (2.12) holds. The determination of A¢(¢)
then amounts, at the infinite place, to the study of the spherical transform of f.,
and at finite places p, of the action of the local Hecke algebra. Specifically, from now

on we assume f is as follows.

ASSUMPTION 2.1. From now on we assume f = f., Hp fp where
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e f is a smooth, left and right K -invariant and Z(R)-invariant function
on G(R), whose support is compact modulo the centre and contained in
G°(R) = {g € G(R) : pu(g) > 0}.
o for all prime p, f, is a left and right I -invariant function on G(Q,), satistying
fp(gz) =w,(z) f(g) for all z € Z(Q,), and compactly supported modulo the
centre,

e whenever I, # G(Z,), we have

wp(z) - .
i (g) = Vof(ﬁp) if there exists z € Z(Q,) such that g € zI',
(g) =

0 otherwise.

Note that this assumption can be fulfilled if and only if we have the following

compatibility condition

ASSUMPTION 2.2. For each prime p, the restriction of w, to I'), N Z(Q,) is trivial.

Let us recall the following result [KL13, Lemma 3.10].

PROPOSITION 2.3.1. Let G be a locally compact group, let K C G be a closed
subgroup, and let m be a unitary representation of G on a Hilbert space V' with central

character w. Let f: G — C be any left and right K-invariant function satisfying

e f(gz) =w(z)f(g) for all z in the centre Z of G,
e |f| is integrable on G/Z.
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Then the operator T(f) on V defined by

T(flv= f(g)m(g)vdg

G/zZ

has its image in the K-fived subspace VE and annihilates the orthogonal complement

of this subspace.

Because of Assumption 2.1, this result implies only I'-fixed automorphic forms
having central character w will appear in the spectral decomposition of K. These
automorphic forms come from admissible irreducible representations with central
character w and having a I'-fixed vector. In turn, these representations factor as
restricted tensor products of local representations having similar local properties.
Furthermore, only those automorphic forms ¢ that are generic will survive the
integration against a generic character on U, hence we may restrict attention to local
representations that are generic. We now switch to a local set-up and we treat the

finite places and the Archimedean place in the next two subsections respectively.

3.3. Non-Archimedean Hecke algebras. Let p be a prime number, and let
f» : G(Q,) — C be the local component of the function f in Assumption 2.1. Let
(m, V') be a unitary representation of G(Q,) with central character w,. Throughout
this section the Haar measure on G(Q,) is normalised so that K, = G(Z,) has volume

one. By Proposition 2.3.1 we have an operator

(2.14) (f)o = /G o J@e)de
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acting on the T',-fixed subspace V'» and annihilating the orthogonal complement of

this subspace.

First, let us consider the case I', # G(Z,). Then any I',-fixed vector v € V' is also

fixed by 7(f,), since in this case by Assumption 2.1 we have

_ 1 B
" = S / r(gvdg =

We now turn to the situation I', = K, = G(Z,) (in particular, the character w,

must be unramified). We have have the following [RS07, Theorem 7.5.1].

PROPOSITION 2.3.2. Let (m,V) be an irreducible, admissible, representation of

G(Q,). Assume m has a non-zero K,-fized vector. Then V5» has dimension 1.

REMARK 2.3.1. In [RS07, Theorem 7.5.1] it is assumed 7 has trivial central
character. However, in our situation, the fact that m has a non-zero K,-fized vector
forces the central character to be unramified. We can thus twist our representation by

an unramified character to reduce to the hypothesis of [RSOT7].

By definition, any non-zero vector ¢ in V% is then called the spherical vector.
Since 7(f,) acts on V57 which is one-dimensional, the spherical vector is an eigenvector
of @(f,). Finally, let us relate the operator 7(f,) to the action of the unramified
Hecke algebra. The local Hecke algebra #'(K),) is the vector space of left and
right K ,-invariant compactly supported functions f : G(Q,) — C, endowed with the

convolution product
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If (7, V') is a smooth representation of G(Q,), then the Hecke algebra #(K,) acts on

the K-invariant subspace V*» by

w(f)o = /G o, (@@

LEMMA 2.34. Let f be a bi-K,-invariant function on G(Q,), with a (unramified)
central character, and compactly supported modulo the centre. There exists a compactly

supported bi-Kp,-invariant function f on G(Q,) and a complete set of representatives

G of G(Qp)/Q, satisfying f(gz) = f(g)]lzg (z) forallg € G and z € Q.

Proor. By the Cartan decomposition we have

G@)= ][ Kprpfp“ ]Kp.

i,jtET
1<j<t—j

Thus we have
1 .
G(Qp)/@; = H KP[ g Pt
pt=d

720
i>25

K, /Z;.

Fix a complete set of representatives K, of K,/ Z, . Then

1 .

G:HKp[ P ]Kp
§>0 P
t>2j5

is a complete set of representatives of G(Q,)/Q,. Moreover, defining

1 .
S:HKp[ "
p'

720
teZ

] K, 0 Supp(f) = (Z;G) N Supp(f),

J
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the function f = 1g x f has the desired properties. O

Now the function fp attached to f, by Lemma (2.3.4) is an element of the Hecke

algebra, and we have 7(f,) = 7(f,), as

w(v= [ ferlowd= [ 1y(@) s (2)m(g)v dz dg = 7(f,)v.
G(Qp) G(Qp)/Qp JQp

We summarize the above discussion in the following proposition.

PROPOSITION 2.3.3. Let p be a prime number, and f, be the local component of
the function f in Assumption 2.1. Let (7w, V') be an irreducible unitary representation
of G(Q,) with central character w,. Then the operator T(f,) from Proposition 2.3.1
acts by a scalar \;(f,) on the T, fived subspace V'» and annihilates the orthogonal
complement of this subspace. Moreover, if ', # G(Z,) then A\:(f,) =1, and if ', =

G(Z,) then 7(f,) equals the Hecke operator m(f,), where f, is given by Lemma 2.3.4.

3.4. The Archimedean representation. In this section we discuss various
aspects of the Archimedean component of the automorphic representations involved
in the spectral expansion of the automorphic kernel Ky. We first show that in our
situation this representation must be an irreducible principal series representation,
that is full induced from the Borel subgroup. A representation of G(R) which has a

non-zero K.-fixed vector is called spherical.

PROPOSITION 2.3.4. Any generic irreducible spherical representation (w,V') of

G(R) is a principal series representation.
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The author wishes to thank Ralf Schmidt for communicating the following argu-

ment.

PROOF. As explained at the end of [Vog78], the generic representations are exactly
the “large” onmes, i.e., those with maximal Gelfand-Kirillov dimension. The Gelfand-
Kirillov dimension of all irreducible representations of GSp,(R) have been calculated
in [Ver19, Appendix A]. In particular the maximal Gelfand-Kirillov dimension is
4, and the irreducible large representations are either discrete series or limit of
discrete series, induced from the Siegel parabolic subgroup, Langlands quotient of
representation induced from the Klingen subgroup, or principal series representations.
Now the multiplicity of each possible K..-type are described in [Ver19, Chapter 4],
and among large representations of GSp,(R) only principal series representations

contain the trivial K -type. 0

It is then known by [Ver19, Chapter 4] that the trivial K -type occurs in 7 with
multiplicity one, that is to say there is a unique (up to scalar multiplication) K .-fixed
vector in the space V. Moreover, m has a unique Whittaker model, and the image
of a non-zero K -fixed vector is by definition given by the Whittaker function.
The Whittaker function is an eigenfunction of the centre of the universal enveloping
algebra, which acts as an algebra of differential operators. One may then obtain a
system of partial differential equations characterizing the Whittaker function, and
compute it explicitly. The Whittaker function may also be computed by the mean of
the Jacquet integral. This has been done by Niwa [Niw95] and Ishii [Ish05]. We

shall return to this in § 3.4.3 below.



80 CHAPTER 2. KUZNETSOV FORMULA

3.4.1. The spherical transform. In this section we discuss the spherical transform
for Sp,(R), which in some sense is the Archimedean analogue of the Hecke operators
studied in subsection 3.3. Note that the arguments of this section work, with the
required modifications, for an arbitrary real connected semisimple Lie group with
finite centre (see [Hel84]). We normalize the Haar measure on Sp,(R) so that K.
has measure 1. If h is any bi- K -invariant compactly supported function on Sp,(R),

its spherical transform is the function & defined on a*(C) by

(2.15) W)= [ hlg)o-e)de,
Sp4(R)

where

(2.16) 6 (g) = / ol AGE) g

is the spherical function with parameter —v (here p is the half-sum of positive

roots).

PROPOSITION 2.3.5. Let f,, be the Archimedean component of the function f
in Assumption 2.1. Let (m,V') be a generic irreducible unitary representation rep-
resentation of G(R) with trivial central character. Then the operator T(fs) from
Proposition 2.5.1 acts by a scalar \x(fso) on the K fized subspace VE= and annihi-
lates the orthogonal complement of this subspace. Moreover, provided this subspace
VEe s non zero, then m is a principal series representation, and M;(fso) = foo(—u),

where foo 15 the spherical transform of fo and v is the spectral parameter of .

PROOF. If VE~ is zero then by Proposition 2.3.1 the statement is vacuous.

Assume now 7 has a non-zero fixed vector. By Proposition 2.3.4, 7 is then a principal



3. REPRESENTATIONS 81
series. Then V%« is one-dimensional, so if v is any K-fixed vector in V then we

have

(2.17) T(foo)v = Ax(foo)v

for some complex number A;(f). Since 7 is induced by a character of the Borel
subgroup, to compute the eigenvalue \.(f), we may realize m as acting by right
translation on a space of functions ¢ satisfying for all g € G(R), u € U(R) and
aeTH(R)

(2.18) ¢(uag) = e =@ g (g),

where v € a*(C) is the spectral parameter of 7. We may view a Z(R)-invariant
function supported on G(R)* as a function on Sp,(R), so the operator 7(f) of
Proposition 2.3.1 is given by
@) whv= [ Jeneeds= [ u@rEvds

G(R) Sp4(R)
If ¢ is a non-zero K .-fixed function satisfying (2.18) then because of the Iwasawa
decomposition we must have ¢(1) # 0. Using the integration formula [Hel84,

Ch. I Corollary 5.3] and right- K, invariance we may compute

= / fso(au)o(au) da du dk = Fsolau)elPstrloe@) da du ¢(1),
o JUAT UA+

where AT is the subgroup of A(R) with positive diagonal entries. Therefore, using

the Iwasawa decomposition and left- K, invariance of f.,, the eigenvalue A (f) is
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given by
() = / fro(g)e A8 dg
Spy(R)

_ / / Frolg)elPH 00 dg dk = / Fo(£)60(8) dg = Fool—1).
oo ¥ Spy(R) Sp4(R)

0

The spherical transform fs, will thus play the role of the test function on the
spectral side of our formula. On the other hand, the geometric side will involve
some different integral transforms of our test function f.. It is therefore natural to
investigate the analytic properties of foo, and to seek to recover fs from f... This

can be achieved by the Paley-Wiener theorem and Harish-Chandra inversion theorem.

3.4.2. The Paley-Wiener theorem and Harish-Chandra inversion theorem. The
material in this section is taken from [Hel84]. As in 3.4.1, the arguments are valid for
arbitrary real connected semisimple Lie groups with finite centre. Let us introduce a
bit of notation. We denote by (,) the Killing form on the Lie algebra of Sp,(R), and
we define for each v € a* a vector A, € a by v(H) = (A,, H) for all H € a. We then
define (\,v) = (A), A,). We define a, as the subset of elements H € a satisfying

a(H) >0 for all @ € ®g, and a} = {vr € a: A, € a;}. Explicitly the Killing form is

L }:O<x<y}.
-y

Harish-Chandra’s c-function captures the asymptotic behaviour of the spherical

given by (X,Y) =67Tr(XY) and a, = { {

function and it gives the Plancherel measure. More precisely, by Theorem 6.14
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of [Hel84, Chap. IV], if H € a* and v € a¥ then we have

lim et g (exp(tH)) = c(—iv).

t——+o00

Moreover, ¢(v) is given, for v € a%, by the absolutely convergent integral

(2.20) c(v) = / eHpAU) gy
U(R)

where the measure du is normalized so that ¢(p) = 1, and has meromorphic continua-

tion to a*(C) given in our situation by the expression

: 200 ((iv, o))
c(—iv) = ¢ — — ,
M i ()

where @ is the set of roots, oy = fa.ay and the constant ¢y is such that c(p) = 1.

Using the duplication formula T'(2)[(z + 1) = 722!72T(22), we can rewrite this as

Co I'({iv, ag
_ o T tUimod)

WP ivao))

We then have the following theorems

THEOREM 2.3.1 (Paley-Wiener theorem). Let J#%(a}) the set of Q-invariant

entire functions h on af. such that for all N > 0 we have
h(v) <y (14 |v|)~NefIR0I,
Let

A (az) = | A (ar).

R>0
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Then the spherical transform f — f is a bijection from C°(Ku\Spy(R)/Ks)
to A (af).

THEOREM 2.3.2 (Inversion theorem). There is a constant ¢ such that for every

function f € C*(K\ Sp,(R)/K) we have for all g € Sp,(R)

(2.21) eflg) = [ Few)o-sle) s

REMARK 2.3.2. The constant ¢ may be worked out by Exercise C.4 of [Hel84,
Chap. IV].

REMARK 2.3.3. Using formulae I'(iz)T(—iz) = % and I'( — iz)['(} 4+ iz) =

zsinh 7z

™

——, the Plancherel measure is given by

dv 167"
c(iv)e(—iv)

(2.22) [ (¥ ao) tanh(z (v, a))dv.

acd

3.4.3. The Whittaker function and the Jacquet integral. As mentioned above, the
Whittaker function is a non-zero K.-fixed vector in the Whittaker model, and it
is unique up to scaling. It is given by (meromorphic continuation of) the Jacquet
integral. Namely, if ¢ is a generic character of U(R), we have the Jacquet integral
(2.23) Wirgw) = [ oDy da

U(R)

The Jacquet integral converges absolutely for $(v) € a’, as may be seen by using

the absolute convergence of (2.20) and computing

(2.24) W (v, g,¢)| < /U(R) |€<u+p,A(Jug)>’ du = €<pfs%(u),A(g)>C(§R(V))‘
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Moreover, it has meromorphic continuation to all v € af. Ishii [Ish05] computed

explicit integral representations for the normalized Jacquet integral

1 1
(225> W(V7g7¢) = H HF (5 + <V7 Oéo>) W<V7g7w>7
acd
ai
a2
namely if a = ay?t € AT then for any v € a we have (note the different
a;l

choice of minimal parabolic subgroup)

W (v,a,9) = 2a1a§/ / K,qu1 (27rvl)Ku1;V2 (27vy)
o Jo

2
a V1V v v dvidv
2 1V2 o [ U1 2 10U

xXexp|—7m| ——+—F +aj | —+— .
V12 ai V2 U1 V1V2

This implies in particular that the normalized Jacquet integral satisfies the functional

(2.26)

equations

(227> W<O- v, g, 1/}) = W(vavw)

for all 0 € Q. If t € A" and if we denote by ¢, the character ¢ (u) = ¢(t~'ut), then it
is easy to see (first by a change of variable in the domain where the Jacquet integral

is absolutely convergent, then by meromorphic continuation) that

(2.28) W (v, g, 1) = P 18O (y t71g o).

3.4.4. Wallach’s Whittaker transform. Theorem 2.3.3 below is a consequence
of [Wal92, Ch. 15], which is valid for arbitrary real reductive groups. However
in order to avoid introducing additional notation, we stick to the case of Sp,(R).

Let C(U\ Sp,(R)/K, ) be the space of functions f on Sp,(R) satisfying f(ugk) =
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¥(u)f(g) for all u € U(R), for all k € K, and for all g € Sp,(R), and such that f is

smooth and has a compact support modulo U(R).

THEOREM 2.3.3 (Wallach’s Whittaker inversion). For f € C°(U\ Sp,(R)/K, )
define the Whittaker transform

W) =c [ F@W(ir,a e da,
At
where the constant c is the same as in Theorem 2.3.2. Then we have

f=7W(),

where
dv
c(iv)e(—iv)

7@ = [ a)W(-inav)

3.4.5. An integral transform. Let g € G(R), t € A" and let ¢ be a generic
character of U(R). When dealing with the geometric side of the relative trace formula,

we shall be interested in the integral

I(f) = / (g do

Using expression (2.16) and applying Theorem 5.20 of [Hel84, Ch.I] that relates
integration on K, to integration on U(R), one may establish the following identity

for all v € ag

(2.29) o,(g) :/ olotrAQug)) (o, A(w) 4
U(R)
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From this identity, ignoring convergence issues and treating integrals as if they were

absolutely convergent, one may heuristically expect the following

(2.30) / O T s = W (g )W (0,7,

However, the domain of absolute convergence of the two Jacquet integral in the right
hand side are complementary from each other, and the integral in the left hand side
is likely not absolutely convergent, making such a result, where the left hand side
s (optimistically) a semi-convergent integral and the right-hand side is defined by

meromorphic continuation, likely difficult to prove.

Carrying on with this heuristic and using Theorem 2.3.2, let us write

- ) dv _
cl(f) Z/R) / fm(—ZV)¢—iu(tUg)m¢(U) du

/foo —W/ ¢—in (tug) e (u)du oE )dz_w)

:/* foo (=)W (—iv, g, )W (iv, t ’W%'

Unlike (2.30), this equality seems more reasonable. Indeed, the left hand side is

absolutely convergent because f., is compactly supported, and in the right hand side

fs has rapid decay. We now give a rigorous proof of the following theorem.

THEOREM 2.3.4. Let fo, be a smooth, bi-K.-invariant, compactly supported
function on Sp,(R). Let g1,g0 € G(R), and let ¢ be a generic character of U(R).

Then we have

— d
/ foo(goug))Y du—/ foo —iv) iv,gl,w)W(iu,ggl,w)m,
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where W (v, -, 0) is the v-Whittaker function of the principal series with spectral

parameter v.

REMARK 2.3.4. Note that Wallach’s Whittaker inversion theorem holds true for
arbitrary real reductive groups. Thus Theorem 2.3.4 also holds true for general real

reductive groups (with the relevant notations).

PROOF. In the variable gy, both sides transform on the left by U(R) according to
1, and are K -invariant on the right. Thus by the Iwasawa decomposition, it suffices
to prove it for g = a € AT. Similarly, in the variable gy, both sides transform on the
right by U(R) according to ¢, and are K-invariant on the left, thus it suffices to
prove it for go =t € A*. Also, by (2.28), we may restrict ourselves to t = 1. With

notations of Theorem 2.3.3, we have

/* fw(—iy)W(—iu,a,@/})W(il/, 17@)% = 9(0[)(3)7

where
a(”) = fm(_iV)W(iV7 17%)

Moreover the map F' : g — fU(R) foo(ug)th(u) du belongs to C=(U\ Sp,(R)/ K, 1) since
foo 18 smooth and compactly supported. Hence by Wallach’s Whittaker inversion it

suffices to show that o = W (F), that is for all v € a* we have

(2.31) a(l/):/ e~ 2Hploga) foo(ua)y(u) du W (iv, a, ) da.
A+ U(R)

Since both sides are meromorphic in v, it suffices to show this for R(iv) € a’. In

this region, the Jacquet integral W (iv, a, ) = fU(R) el Alua)y, (4 )du, converges
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absolutely. Hence the integral in (2.31) may then be written as

/ / foo(au)p(aua™) du W (iv,a, 1)) da :/ / foo(au)W (iv, au,¢) du da
A+ JU(R) At JU(R)

:/ / foo(au)/ elprivAQwaw) (41 duy du da.
A+ Juw) U(R)

Write Ju; = ugexp(A(Jup))ko(Juy) with us € U(R) and ko(Ju;) € K. Then

A(Jujau) = A(Juy) + A(koau). So the integral we have to evaluate becomes

/ / €<p+i”’A(J”1)>¢(U1)/ Foolau)elpriv-Atolunaw) gy dy, da
A+ JU®R) U(R)
:/ / €(P+iu,A(JU1)>¢(ul)/ foo(g)e(p+iu,A(ko(Ju1)g)> dg du; da
A+ JUR) Sp4(R)
:/ / e(p+iu,A(JU1)>w(u1)/ foo<g)€<p+iu,A(g)> dg du; da
A+ JUR) Sp4(R)
= W(il/, 17E)f~.(_2y)

O

3.4.6. Estimates for the Whittaker function. We close this section with some
estimates for the Whittaker function to be used later on. We begin with recalling the

following estimate for Bessel K functions from [HMO06, Proposition 7.2].

LEMMA 2.3.5. Let 0 > 0. For R(v) € [—o, 0] we have for all € > 0

S,
Ku(“) <<a,e

1

I+[SW)])7 w7 if 0<u<l+73
u"ze ™ if  uw>14Z(S(v)
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In the following lemma, we have only used trivial bounds and haven’t sought for

optimality.
LEMMA 2.3.6. Let 0 > 0. Let v € af with —o < 2= ”2), m(”ﬁ”) <oanda€ A*.
For simplicity, set ri = N(”T”Q and ry = Bt ("1+”2)| Then for all € > 0 we have

W (v,a,1) < (14 1) (1 + 1) Hara;2 ¢
+ (14 71) (1 +72) 20103
(14 70)7T (L + 1) (O H g 2012

(14 70) T (1 4 ) a2 1meg2,

PRrOOF. This follows from the explicit integral representation (2.26) together with

Lemma 2.3.5. O

PROPOSITION 2.3.6. Let a € At. Then, for R(v) small enough we have for

alle >0

W(v,a,9) <nw)a | [ HS@), ag) IR0l

acd

PROOF. First observe that, if #(v) € a*, then the claim follows from the trivial
bound (2.24). Next, if () belongs to any open Weyl chamber, there is o € 2 such

that Re(o - v) € a*. The functional equation (2.27) gives

B F(%—k(a-y,ao))
W(v,a,9) =[] (1 (o) W(o-v,a,v).
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Since the Weyl group acts by permutation on the set of (positive and negative) roots,

the product can be written as

F(l B <V7 Oé0>) — V),x
[1 mia < L 0@ a2,

aca,
where @, is the set of positive roots whose image by ¢ is a negative root and we
have used that |[(z 4 iy)| ~ v2me 2 |y|*~2 as |y| — oo and that the numerator
has no poles because $(v) is small enough. But if ¢ - « is a negative root then we
have (R(v), ap) < 0 and so we are done in this case again. Finally, if R(v) belongs
to a wall of a Weyl chamber, by Lemma 2.3.6 we may apply the Phragmén-Lindelof

principle to deduce the result. [l

4. Eisenstein series and the spectral decomposition

The goal of Eisenstein series is to describe the continuous spectrum. The latter is
an orthogonal direct sum over standard parabolic subgroups P, each summand of
which is a direct integral parametrized by za}. Eisenstein series will give intertwining
operators from some representation induced from Mp to the corresponding part of
the continuous spectrum. One thus wants to define F(-, ¢, v) for ¢ in the space #p of
the aforementioned induced representation, and for v € ia},. Because of convergence
issues, one originally defines E(-, ¢, v) for ¢ lying a certain dense space of automorphic
forms Y C #p and for v € a}(C) with large enough real part. The definition is
then extended to all ¢ in the completion of 7 and to all v € a}(C). Our exposition

follows Arthur, and in particular [Art05]. As before, we are setting G = GSp,, but
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the results discussed here hold (with the necessary modifications) in more generality,

namely for any connected reductive group over Q.

4.1. Definition of Eisenstein series. Fix a standard parabolic subgroup
P = NpMp throughout this section, and let Ap be the centre of Mp, and AL (R)
be the connected component of 1 in Ap(R). Let Ry, gisc be the restriction of the
right regular representation of Mp(A) on the subspace of L*(Mp(Q)AL(R)\Mp(A))
that decompose discretely. For v € a}(C), consider the tensor product given by
Ry disen (X) = RMP’diSC(x)e<”’HMP(X)> for x € Mp(A). The continuous spectrum is

described via the Eisenstein series in terms of the induced representation
Ip(v) = Indggg (Inp(a) @Rrp dise,)-

The space of this induced representation is independent of v and is given in the

following definition.

DEFINITION 2.4.1. With notations as above, define .7 to be the Hilbert space

obtained by completing the space 7 of functions
(2.32) 6 : Np(A)Mp(QAHR\G(A) —» C
such that

(1) for any x € G(A), the function Mp(A) — C, m — ¢(mx) is 25, -finite, where
o, is the centre of the universal enveloping algebra of M p(C),
(2) ¢ is right K-finite,
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Then the representation #p(v) acts on #p via

(Ip(v,y)9)(x) = ¢(xy) exp((v + pp, Hp(xy))) exp(—=(v + pp, Hp(x)))
for x,y € G(A), and is unitary for v € iap(C).

We now define the Eisenstein series attached to P. We extend Hp to P(Q)\G(A)
by setting Hp(nmk) = Hp(m) (n € Np,m € Mp, k € K), therefore the expression in

the following proposition is well defined.

PROPOSITION 2.4.1. For v € a}(C) with large enough real part, if x € G(A) and

¢ € A7, the Eisenstein series

B o) = S 6(6x)exp((v+ pp, Hp(5%)))
SeP(Q\G(Q)

converges absolutely.

The relation between the induced representation #p(v,y) on #p defined above
and the regular right representation on the corresponding space of Eisenstein series is

given formally by
E(Xa jP(Vv y)¢7 V) = E(Xy7 ¢V)

Langlands provided analytic continuation of Eisenstein series, as well as the spectral
decomposition of L*(Z(R)G(Q)\G(A)). The latter gives a decomposition of the right
regular representation R as direct sum over association classes of parabolic subgroups.
The class of G, viewed as a parabolic subgroup itself, gives the discrete spectrum.
It consists on one hand of cuspidal functions on Z(R)G(Q)\G(A) and on the other

hand of residues of Eisenstein series attached to proper parabolic subgroups. The



94 CHAPTER 2. KUZNETSOV FORMULA

contribution of the other classes is given by direct integrals of corresponding induced
representations and gives the continuous spectrum. For a nice survey, we refer the
reader to [Art05]. We now describe explicitly the Eisenstein series that are relevant

for us.

4.2. Action of the centre and of the compact I'. Since our test function
f is bi-I-invariant and has central character w, Fisenstein series occurring in the
spectral expansion of its kernel Ky are only from the subspaces of % satisfying
similar properties (see Lemma 2.4.5 below for a formal justification). Using the

Peter-Weyl Theorem, we can further deduce:

LEMMA 2.4.1. Let P be a standard parabolic subgroup and Ap it centre. Let S5 (w)
be the closed subspace of H#p consisting in functions ¢ such that for allz € Z(A) and
k € I', we have ¢(zgk) = w(z)p(g). Then

(2.33) A (w) = EP A (v)

where the x-orthogonal direct sum ranges over characters of AL(R)Ap(Q)\Ap(A)
that coincide with w on Z(A), and F (x) is the subspace of 7} (w) consisting in
functions ¢ such that for all z € Ap(A), ¢(zg) = x(2)0(g).

4.3. Explicit description of Eisenstein series. Write the decomposition of
Rip gise into irreducible representations m = @), 7, of Mp(A)/Ap(R)* as Ry dise =

D, =D, (Q,n,). Then we have

Ip(v) =P Ir(m) =P (@ fp(m,,,)> .

™
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Moreover the representation space of each p(m,) does not depend on v. Hence, to

describe the spaces #7 (x) it suffices to describe

e the irreducible representations m with central character x occurring Ry, disc,

e the I'-fixed subspace of each representation #p(m,).

By the Iwasawa decomposition, elements of this space may be viewed as families of
functions indexed by K/I' satisfying some compatibility condition that we proceed to
make explicit now. We also prove that the Archimedean part of #p(m,) is a principal

series representation, and we provide its spectral parameter.
4.3.1. Borel Eisenstein series.

LEMMA 2.4.2. The irreducible representations occurring in Ry gisc are precisely
characters x of TH(R)T(Q)\T(A). Let x be such character and v € ia*. The
Archimedean part of Fp(x,) is an irreducible principal series representation with

spectral parameter v.

PROOF. The first part is because TT(R)T(Q)\T'(A) is abelian. For the second
part, since Xoo = 1 we have F5(x, )0 = Fp(€”), which is irreducible because v € ia*

(see [Mui09, Lemma 5.1]). O

Characters x of TT(R)T(Q)\T'(A) that coincide with w on Z(A) are in one-to-
one correspondence with triplets (wy, ws,ws) of characters of RyoQ*\A* satisfying

wlwgwg = w, via
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Define a character of B by

w([xztfl ; ) =ert@patmonto

tyfl

(note that this notation is sound, as it coincides with our original w on scalar matrices).

PROPOSITION 2.4.2. Let x = (w1, ws, w3) with wiwow3 = w. Consider (&k)kek/m

such that

(1) for all k, ¢y € C,
(2) if v € KN B(A) then for all k, ¢x = x(7)dak-

Then the function on G(A) given for u € U(A),t € T(A),k € K by

(2.34) ¢(utk) = x(t)¢x,

is well-defined and belongs to 5" (x). Moreover, every function in 3" (x) has this

shape.

PRrROOF. We first prove that ¢ is well-defined. Suppose uitik; = ustoks. In

particular kiky ' = (uit;) "' (usty) € B(A) N K. Therefore

X(t1) o, = x(t1)x(kiky o, = x(t2) Pis-

Next we show that ¢ belongs indeed to %Br(wl, wo, w3). The fact that ¢ is invariant on

the left by U(A)T(Q)T(R)™, the right invariance by I" and the fact that ¢ transforms
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under 7T'(A) according to x are obvious from the definition. Finally,

/ / |¢(mk)]2 dm dk :/ / \¢k\2dm dk
K JTR)*+T(Q\T(A) K J(R5oQ*\AX)3

= Vol(R5pQ*\A™)* VoI(T') >~ [¢|* < o0
keK/T

since R5oQ*\A* is compact and K /I is finite. As a last point, we show that we thus

exhaust all of 3" (wy,ws, w3). Let ¢ € H#5" (wi,ws, ws). Define

b = o(k).
Then it is clear that equation (2.34) holds. As for condition 2, note that if v =t,u, €
K N B(A) with t, € T(A) and u, € U(A) then
Py = G(7k)
= o(tyurk) = x(ty)o(k)
= X(7)¢x.

O

REMARK 2.4.1. Consider the action of K N B(A) on K/T" by multiplication on
the left. Then the compatibility condition 2. can only be met if x s trivial on the
stabilizer of each element k € K /T such that ¢ # 0. Thus the dimension of 3" ()

s the number of distinct orbits of such elements.

4.3.2. Klingen Eisenstein series. The set of characters x of Ax ™ (R) Ax(Q)\ Ak (A)

that coincide with w on Z(A) is in one-to-one correspondence with pairs (wy, ws) of
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characters of R.oQ*\A* satisfying wjw, = w, via

X ([ v L ]) = wy (u)wa(t).

a b
For convenience, if A = [¢Y] € GLj, define ¢4 = {c 1y } € Mg .
det(A)
LEMMA 2.4.3. Let x = (w1, ws) with wyws = w. The irreducible representations

with central character x occurring in Ry, disc are twists wy @ 7, where ™ occurs in

the discrete spectrum of L*(Rso GLa(Q)\ GLa(A)) and has central character w .

PROOF. Let m be an irreducible representations with central character y oc-
curring in R, gise- By definition, the space of 7 is contained in the subspace of
L2(Mg(Q) AT (R)\ Mk (A)) consisting of functions with central character y. This
subspace identifies with the space L*(Rso GLy(Q)\ GLy(A), w;) via

oo ([t [ eee).
[

PROPOSITION 2.4.3. Let x = (wy,wsz) with wyws = w. Let (m,Vy) occur in the
discrete spectrum of L*(RsoGLa(Q)\ GLg(A)) with central character wy. Consider

(ér)xek/r such that

(1) for allk, ¢k € Vg,
(2) if v € KN Px(A) then for all k, ¢y(- Projp2(y)) = we 0 Projpr (v~ ).

Then the function on G(A) given for n € Ng(A),m € Mk (A),k € K by

(2.35) ¢(nmk) = w o Projg" (m)¢x (Projp,* (m))
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is well-defined and belongs to Jp, (w2 ® 7T),,)F. Moreover, every function belonging

to I, ((wy @ m),)" has this shape.

REMARK 2.4.2. Condition (2) implies that each ¢y is right-SO9(R)-invariant (and
hence must be an adelic Maaf$ form or a character). Indeed, let v < oo and let k, be

a compact subgroup of GLy(Q,) such that
{ta: A€ k,} C K,.

Assume moreover that K, = T',. Then K/T is left invariant by T, hence for all
A € k, we have ¢ (-A) = ¢,k = O«. In particular, for v = oo, we may take
k, = O3(R), hence the claim.

PRrROOF. We first prove that ¢ is well-defined. Suppose nimi;k; = nomsks. In

particular kok; ' = (ngmy)~'(nym;) € Px(A) N K. Therefore we have
Projp?(my) = Projpi?(nimy) = Projp® (nomskak; ') = Projit (my) Projp? (kok, ).
Then

wy © Projpt (my) i, (Projpy?(my)) = wy o Projpy (my) i, (Projiic? (ma) Projp,® (kak; 1))
= wy 0 Projpi (my)ws o t(kiky ")k, (Projpi? (mg))
= ws 0 Projp-* (ms) ¢, (Proji-2(my)).

Next we show that ¢ belongs indeed to p, (w2 ® 7),)". The fact that ¢ is invariant
on the left by Ni(A)Mg(Q)Ax™(R) and on the right by I' are obvious from the
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definition. The fact that ¢ is square integrable follows from

|/ (i dmak = [ [ 6x(ProjGLt (m))[2 dm dk
K JAkT(R) Mk (Q)\ Mk (A) K J AT (R) Mk (Q)\ Mk (A)

= Z Vol(F)/ / | (X)|? dt dx < oo
R0 GL2(Q)\ GL2(A) v R50Q*\AX

since ¢y is square integrable, R.oQ*\A* is compact and K/I" is finite. Finally, we
need to show that for all g = nmk, the function ¢z : Mg(A) — C,m; — ¢(m;g)
transform under Mk (A) on the right according to ws ® 7. Indeed, for m; € Mk (A)

we have

¢g(my) = ¢(minmk) = d(minm;t mimk) = w; o Projg’gzl(m)wz o Projggzl(ml)gbk(ml)

€Nk (4)

hence the claim since ¢y € V.

As a last point, we show that p, ((wy ® 7),)" consists exactly in such functions.

Let ¢ € Ip, ((wo @ 7),)". Define

DK (A) = ¢(ak).
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Then it is clear that equation (2.35) holds. As for condition (2), note that if

v =n,m, € K NPg(A) then

o (A Projlg}f;2 (7)) = ¢(LALPr0jS;2 (v)k)

.GL _
B Projgl ()1 y
=90 |ta 1 m,
.GL
ProjSlt (+)

= wy 0 Projg (v ) é(van; ' yk)

= wp 0 Projg (v ) d(eany 3! tark)
N
€Nk

= w0 Projprt (v )i (A).

Finally, by definition of p, ((ws ® 7),) the function m — ¢(mk) transforms under
Mk (A) on the right according to we ® 7, from which follows ¢y transforms according

to . ]

Finally we prove the following

PROPOSITION 2.4.4. Let (m,Vy) be a representation occuring in the discrete spec-
trum of L*(Rso GLo(Q)\ GLy(A)) with central character wy. Jp, ((wy @ m),) has a
K oo-fized vector if and only if m has a Oz(R)-fized vector. In this case, Fp, ((wWa®T),)oo
is generic if and only if o s a principal series. Finally if mo is a spherical principal
series with spectral parameter s and v € iap then Ip, (w2 @ T),)oo is a principal

series representation with spectral parameter v + vi(s), where vi(s) is the element of
1
Y2

a*(C) corresponding to the character [ o ] = |y|®.

it
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PRrROOF. The first claim follows immediately from Proposition 2.4.3. By the
spectral decomposition for GLs, if 7 has a O2(R)-fixed vector then 7, is either a
character or a principal series. But representations induced from a character of
the Klingen subgroup are not generic, as seen in row IIb of Table A.1 in [RSO7].
This shows the second claim. Finally assume 7., is a spherical principal series on
GLy with spectral parameter s. Then we might see 7., as the representation of

1
PGLy(R) induced from the character x; : [y2 ix %} — |y|®, where s is either an

imaginary number or a real number with 0 < |s| < % Define the following subgroups:

_ 1 Z/%
N1:US2:|:11 :|,A1:{ 1:&7; ]y#O},Mlz{LAAEPGLQ(R)}
1 y 2
1

Note that Ny Nx = U, A; Ax(R) = T'(R) and M; Ax = Mk. We might view x; as a

character of A;Nj. Since wy is trivial on Ak(R), inducing in stages, we get

Io(wr @ 7))o = Indp ) (In ) R6” @ 7o)
= Ind (0 (I @€ @ Indyy ()
_ IndG(R) In dPK( ) (INK( R) ® INl ®€u+u}<(s))

— Ind (IU ®6V+VK(5))
Since v € ia*, by Lemma 5.1 of [Mui09] this representation is irreducible. U

4.3.3. Siegel Fisenstein series.

Characters x of Ag™(R) Ag(Q)\ As(A) that coincide with w on Z(A) are in one-

to-one correspondence with pairs (wy,ws) of characters of R.oQ*\A* satisfying

(| em L)) et

wiw? = w, via
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For convenience, if A € GLy, define 14 = [A TAfl] € Mg.

LEMMA 2.4.4. Let x = (wi,ws) with wiw3 = w. The irreducible representations

with central character x occurring in Ry dise are twists wy @ 7, where m occurs in the

discrete spectrum of L*(Rso GLa(Q)\ GLy(A)) and has central character w.

PROOF. Similar as Lemma 2.4.3 with trivial modifications where required. [

PROPOSITION 2.4.5. Let x = (wy,ws) with wiwi = w. Let (m,Vy) occur in the
discrete spectrum of L*(Rsq GLo(Q)\ GLo(A)) with central character w,. Consider

(O )kek/r such that

(1) for all k, ¢y € Vi,

(2) if v € KNPs(A) then for all k, ¢y(- Projg? (7)) = wz 0 u(y7)po.
Then the function on G(A) given for n € Ng(A),m € Mg(A),k € K by
(2:36) Bnmk) = w © po(m) by (Proj&l= (m)

is well-defined and belongs to Fpg((wa @ 7r),,)r. Moreover, every function belonging to

Ipg ((we ® W)V)F has this shape.

REMARK 2.4.3. Similarly as Remark 2.4.2, condition (2) implies that each ¢y is

right-O2(R)-invariant (and hence must be an adelic Maaf$ form or a character).

PROOF. Same proof as Proposition 2.4.3, with trivial modifications where required.

O
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PROPOSITION 2.4.6. Let (7, V) be a representation occuring in the discrete spec-
trum of L*(Rso GL2(Q)\ GL2(A)) with central character wy. Fp ((we ® 7),) has a
K oo-fized vector if and only if m has a O2(R)-fized vector. In this case, Fp((wWa®T),)oo
s generic if and only if T 1s a principal series. Finally if w7 is a spherical principal
series with spectral parameter s and v € iap, then Jp (w2 ® 7),)oo @8 a principal
series representation with spectral pammelter v+ vg(s), where vg(s) is the element of

yiu

1
a*(C) corresponding to the character y iuw = |yl

PROOF. Same proof as Proposition 2.4.4, with trivial modifications where required.

O

4.4. Spectral expansion of the kernel. We now give (in Corollary 2.4.1)
the spectral expansion of the kernel. This follows directly from work of Arthur
combined with the discussion of Sections 3.3, 3.4 and 4.3. For technical reasons,
we need the absolute convergence of the spectral expansion. This is the content of
Proposition 2.4.8. The automorphic forms involved in the spectral expansion of the
automorphic kernel are precisely those whose Whittaker coefficients will appear in
the relative trace formula. In particular, the non-generic ones will by definition have
a zero contribution to the spectral side of the relative trace formula, even though

they do appear in the spectral expansion of the kernel.

DEFINITION 2.4.2. For each standard parabolic P we choose an orthonormal basis

Bp of H#p(w) such that
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(1) if Rarpaise = €D, 7 is the decomposition of the restriction of the right regular
representation of Mp(A) on the subspace of L?(Mp(Q)A;(R)\G(A)) that
decompose discretely, then Bp = |, B,, where each B, is a basis of the
space of the corresponding induced representation #p(7,), (note that this
space does not depend on v).

(2) for each representation 7 = @, m, as above, for each place v there is
an orthonormal basis %, of the local representation m, such that 9,
consists of factorizable vectors ¢ = @), <00 Qv Where each ¢, belongs to the
corresponding % ,,.

(3) for each representation 7,, we have B, , = |J, B, where the union is
over the irreducible representations 7 of I, and 3B, , - is a basis of the space

of m, consisting of vectors ¢ satisfying m, ()¢ = 7(7)¢ for all v € T,

Note that conditions (2) and (3) imply in particular that elements of Bp are
in .

DEFINITION 2.4.3. For each standard parabolic P and for each irreducible repre-
sentation m occurring in Ras, qisc, define 9B 1 to be the subset of 9B, consisting in
vectors ¢ whose each local component ¢, belongs to %, , 1, and set %}; =U, B

If x is a character of Ap(A), define

Gp(T,x) = Br1,

where the union runs over representations 7= with central character xy and such that

the induced representations #p(m,) are generic.
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If u € H#p(w), define

Ip(v, flu= fly)Tp(v,y)udy.

G(4)
PROPOSITION 2.4.7. Let v € ia},. Let w € Bp. Then either Ip(v, flu =0 or

u € BY. In the latter case, say u € By. Then if m is generic we have
Ip(v, flu = X(u, v)u,
where Ap(u,v) = A (u, V) Ag,, (u,v), and

(foo(y) if P = B,

foo(v + vk(s,)) if P =Pk and 7o has spectral parameter s,,
)\foo (u, V) =

foo(y +vs(sy)) if P =Ps and o has spectral parameter s,

\]EOO(I/U) if P =G and ms has spectral parameter v,,

and, following notations of Proposition 2.3.3, As, (u,v) is the eigenvalue of the Hecke

operator

® Tpw (fp)'

Ip=G(Zp)

REMARK 2.4.4. If P = G then ap = {0} and Fp(v, f) = R(f).

Proor. This is a combination of Propositions 2.3.3, 2.3.5, Lemma 2.4.2 and

Propositions 2.4.4 and 2.4.6. [

The following statement [Art78, pages 928-935] may be viewed as a rigorous

version of the informal discussion in Section 3.2.
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LEMMA 2.4.5. Let f as in Assumption 2.1. Then for x,y € G(A) we have a
pointwise equality
Kitxy) = St [ 3 Blx ol £y By o
P ia}; uERBp

Here, ng =1, ng = 8, np, = 2 and np, = 2.

However, for the later purpose of interchanging integration order, we want to show
that the above expressions for the kernel converge absolutely. To this end, we need

the following stronger statement.

PROPOSITION 2.4.8. Let f as in Assumption 2.1. Then the following expression
defines a continuous function in the variables x € G(A) and 'y € G(A), which is
moreover bounded on any compact subset of (G(Q)\G(A))?:

Kaps(x,y) = Zn;l/ Z |E(x, Ip(v, [)u,v)E(y,u,v)|dv.

*

ap UEABpP

We do not give a proof of this proposition here, as a similar statement was
proven in the setting of GLs in § 6 of [KL13], the proof thereof can be directly
adapted. For completeness, we include a proof in Appendix A. By combining it with

Lemmas 2.4.2, 2.4.3, 2.4.5 and Proposition 2.4.7, we obtain the following corollary.

COROLLARY 2.4.1. Let f as in Assumption 2.1. Then for x,y € G(A) we have a

pointwise equality

Kf(X, y) = KdiSC(X7 Y) + KB(X7 Y) + KK(X7 Y) + KS(X) y) + Kng(x7 Y),
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where
Kaise(%,y) = Z foo(VU)/\fﬁn (w)u(x)uly),
ueg (T\w)
1 . -
KB(X7y> = g Z Z A fOO(V)/\fﬁn(ua V)E<X7u> V)E(Y7u7 V) dV,
wlwzwgzw ue¥p(Iwi,w2,ws) ia*

1 _ -

Ko =5 3 % [ Rt ) ) Bl ) B v do,
wWiw2=w UE?PK (T,w1,w2) Zuj{

1 . -

Kg(z,y) = 5 Z foo(V 4+ vs(su) A s, (u, V) E(x, u, V) E(y, u, v) dv,

0%
wlw%:w ue?ps (Tyw1,w2) S

and all the automorphic forms involved in K,, are not generic.

Actually, no automorphic form from the residual spectrum is generic, as shown by

the following lemma. Thus K g consists only in elements from the cuspidal spectrum.

LEMMA 2.4.6. Let (m, V) be any irreducible representation occurring in the residual

spectrum of L*(Z(R)G(Q)\G(A),w). Then 7 is non-generic.

PrOOF. We will rely on results of Kim that describe the residual spectrum of Sp,.
Thus we first need to show that the representation res7 given by Definition 2.3.1
belongs to the residual spectrum of Sp,(A). First, res 7 occurs in the discrete spectrum
of L?(Sp,(Q)\ Spy(A)), because there are only finitely many possibilities for the
Archimedean component of any irreducible representation occurring in res 7. Moreover
res is not cuspidal by Lemma 2.3.2. Hence res 7 belongs to the residual spectrum
of Sp,(A), as claimed. In view of Lemma 2.3.1, it suffices to prove that the residual
spectrum of Sp,(A) is not generic. By Theorem 3.3 and Remark 3.2 of [Kim95],

the representations occurring from poles of Siegel Eisenstein series are non-generic.
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Similarly, by Theorem 4.1 and Remark 4.2 of [Kim95|, the representations occurring
from poles of Klingen Eisenstein series are non-generic. Finally, by [Kim95] § 5.3,
irreducible representations 7w occurring from the poles of Borel Eisenstein series are
described as follows. On the one hand, we have the space of constant functions,
which is clearly not generic. On the other hand, for every non-trivial quadratic
grossencharacter p of Q we have a representation B(u) whose local components are
irreducible subquotients of the induced representation IndSBp“(] |ty X p1y). Therefore,
in the terminology of [RS07, § 2.2|, for all prime p, 7, belongs to Group V if p, # 1,
and to Group VI if p, = 1. Now by Table A.2 of [RS07], we see that the only generic
representations in Group V and VI are those from Va and VIa. But Table A.12 shows
that neither of these have a K,-fixed vector. Since almost all 7, contain a K,-fixed
vector, at least one local component of 7 must be non-generic, and thus 7 is not

globally generic. 0

4.5. The spectral side of the trace formula. Let ¢ = 9m,, Y2 = ¥m, be

generic characters of U(A)/U(Q). Fix ti,t2 € AT and consider the basic integral

(2.37) [ / K (X1, yta) o (X) hany (y) dx y.
(U(Q)\U(A))?

Our goal is to compute it in two different ways — using the spectral decomposition
of the kernel K; on the one hand, and its expression as a series together with the
Bruhat decomposition on the other hand. The latter will constitute the geometric
side and will be addressed in Section 5. We now focus on the former. Using the

spectral expansion of the kernel K given by Lemma (2.4.5), we can evaluate the



110 CHAPTER 2. KUZNETSOV FORMULA

basic integral (2.37) as

/ — Zn’l / > E(xty, Ip(v, fu, v)E(yty, u, ) dv them, () thm, (y) dx dy.

0 e Bp

By Proposition 2.4.8, this expression is absolutely integrable since (U(Q)\U(A))?

compact. Thus we may interchange integration order, thus obtaining the Whittaker
coefficients of the automorphic forms involved here. By Corollary 2.4.1, we get a
discrete contribution and a residual contribution, and a continuous contribution —
which itself splits into the contribution of the various parabolic classes. Thus the

spectral side of the Kuznetsov formula is given as follows.

PROPOSITION 2.4.9. We have I = L (Zdise + X5 + Tk + Xg), where

(mi1map)4|miamoy |3

Saise = Y JooVu) A (T () (tati) ) 7, () (o),

ueld (Tw)

1D DN S I R0 YRR

ia*
wiwgwi=w u€¥p (w1 ,w2,ws)

X Wy(B (-, u,v)) (b1t )Wy (B (- u,v)) (toty,) dv,

)DREED SN I SRR ICH VNN

NP
Wiw2=w uGng (T,w1,w2) (L%

X Wy(E(u,v) (4t )Wy (B u, v)) (tat,) dv,
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1 -
Ss=5 > > | Jxwtvs(s)h(uy)
wlwgzw UEZPS (F,whwg) tag

X Wﬂ’(E('v u, V))(tltr_nll)%b(E(" u, V))(tQtr_nlg) dv.

5. The geometric side of the trace formula

We now return to computing the basic integral (2.37) using the Bruhat decompo-
sition. The resulting expression will constitute the geometric side of the relative trace
formula. Similarly as in Section 3, we first work globally before switching to a local
framework. The Weyl group of GSp, has eight elements. However, as we show in
subsection 5.1 below, only the identity element and the longest three elements have a
non-zero contribution. In subsection 5.2 we then obtain a “uniform” expression for
the (global) relevant orbital integrals. In subsection 5.3, we use the integral trans-
form that was discussed in § 3.4.5 to express the Archimedean part of the relevant
orbital integrals in terms of on integral over a* of the test function occurring on the
spectral side of the relative trace formula. However, this integral will appear “inside”
another integral over a certain subgroup U,(R). Conjecturally, we can interchange
integration order and replace the integral over U,(R) with some generalised Bessel
functions. However, we will not need this conjecture in our application in Chapter 3.
In subsection 5.4, we eventually specialise the congruence subgroup I' to be the
Borel congruence subgroup, which allows us to give an explicit expression for the

finite part of the relevant orbital integrals. As expected, the identity contribution is

(at least under some simplifying hypothesis) a delta symbol, while the other three



112 CHAPTER 2. KUZNETSOV FORMULA
contributions give sums of various kinds of generalised Kloosterman sums for which

we give explicit expressions.

Breaking the sum (2.9) over U(Q) x U(Q) orbits leads to a sum over representatives
of the double cosets of U\G/U of orbital integrals. Specifically, set H = U x U,
acting on G by
(xy) 6 = X"y,

and denote by Hjy the stabilizer of §. Since f has compact support, the infinite sum
> sca) | (t; 'x~18yty)] is in fact locally finite and hence defines a continuous function
in x and y on the compact set H(Q)\H(A). Thus we may interchange summation

and integration order, getting

- X0yt ) than, (X)hamy (y) dx d
/H(Q)\H(A) Z St X 0yta)Ym, (X)1m, () dx dy

5eG(Q)

- > /H (Q)\H(A)f(tflx—15yt2)M¢m2(y) dx dy

5eG(Q)

= Z I5(f),

ScU(Q\G(Q)/U(Q)

where

(2.38) I:(f) = /H oy T ) O ) 5,

and d(x,y) is the quotient measure on Hs(Q)\H(A). Using the Bruhat decomposition
G = BQB = [[,cqUoTU, we have

(2.39) U\G/U =[] oT,

oeq
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where T = T/Z. We can then compute separately the contribution from each element
from the Weyl group. Writing H(A) = Hs(A) x (Hs(A)\H(A)), we can factor out
the integral of ¥, ® 1hm, over the compact group Hs(Q)\Hs(A) in (2.38). Therefore,
I5(f) vanishes unless the character 1, ® 1, is trivial on Hs(A). Following Knightly
and Li (and Jacquet), we shall call the orbits H - § such that ¥, ® ¥y, is trivial on
Hs(A) relevant.

5.1. Relevant orbits. In order to characterize the relevant orbits, let us in-
troduce a bit of notation. A set of representatives of T(Q)/Z(Q) is given by the

elements

d1
(240) 01 = |: ! do :|,d1,d2 e Q.
dida

For each o € Q, the corresponding set of representatives of o7(Q) in (2.39) is given

by elements of the form
(241) 60 - 0517

and Hj, (A) consists of pairs (u,d; 'ud,) = (u,d; *o~'ud;o) such that both component
lie in U(A). Since conjugation by d; preserves U(A), the condition that the second
component lies in U(A) is equivalent to u € U(A) and o 'uoc € U(A), and hence

u € U,(A). We accordingly make the following definition.

DEFINITION 2.5.1. For o € (), define

(2.42) D,(A) = U,(A) x 071U, (A)o.
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Then we have
(2.43) Hs (A) = {(u,é;luég) cu€e Uy, (A)} € D, (A).

LEMMA 2.5.1. The relevant orbits are the ones corresponding to the following

elements:

1
; —1 mjjmjo
o=1with 0y =tm, tm, = My myy ,
m%1m12
mjym22
® 0 = 818981 with 01 satisfying dimys = domas,

® 0 = 598189 with 01 satisfying my; = —dymoy,

® 0 = 51595182 = J with no condition on d;.

PROOF. For each representative d, as in (2.41), let us fix u; € U,(A), and compute

6, 'u10, in order to determine under which condition )y, ® 1y, is trivial on Hs, (A).
1 ca—cx
For 0 = 1, we have U, = U, hence we may take u; = {’” La b } Then we have

—133

1 C% (a—cx)ds

07w d = |zdi 1 ads b_d;jf . Thus, by (2.5), the condition that ¢py,, ® ¥m, be trivial
1

on Hs, (A) is equivalent to §; = tm, ‘tm,-

= o Q

1 ¢ 1 ca
For o = s;, we have UU(A)—{{ La }:a,b,cEA}, and if u; = [ 1‘1‘1’1,
1

b2 ady

1
then 6 'uid = [ | ady cdyds , hence the condition that ¥y, ® t¥m, be trivial on
1

1
H;s, (A) is equivalent to ¢ <m12€ — mmj—fb> =1 for all b,c € A, which is equivalent

to myy = mys = 0 and thus contradicts the fact that iy,, and 1y, are generic.

Similar calculations show that o = ss, s159 and sgs; yield no relevant orbit.
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c c

1 1
ForazslsgslwehaveUa(A):{{ b ]:CEA},andifulz{ b }then

1 1
1 c#= -
we have 6 'u;d = 1 jl , hence the condition that 1, ® ¥, be trivial on

H;

121 (

1
A) is equivalent to ¢ (<m12 — My 3—?) c) =1 for all ¢ € A. This is equivalent

to d1m12 = d2m22.

The calculation for o = s95159 is similar. Finally, for ¢ = 51595150 = J the long

Weyl element, Hs, , (A) is trivial. O

A case by case calculation also shows the following.

LEMMA 2.5.2. Let 0 € Q. Then there exists 6 € T(Q) such that the orbit of

0y = 06 is relevant if and only if U, = {u € U : 0~ tuo = u}.

In the sequel, we shall call such elements of the Weyl group relevant as well. In

particular, by definition of the relevant orbits, and by (2.43), we have the following.

COROLLARY 2.5.1. Suppose that the orbit of 6, = o6 is relevant. Then for all
u € U, we have ¥m, (6 1ud) = tm, (u).

5.2. General shape of the relevant orbital integrals. In this subsection
we a uniform parameterization of the relevant orbits. We thus obtain a “uniform
expression” for the relevant orbital integrals. In particular, this expression shows that
the (global) relevant orbital integrals factor as a product of local orbital integrals, and

thus can be analysed locally, which will be the object of the subsequent subsections.
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LEMMA 2.5.3. For each 6, € T(Q) and o € Q, the map

v : Dy(A) = D,(A)

(u17 u2) = (u17 50_.1U1_150-U2)
induces a bijective map

Hs, (Q\Ds(A) = (Us(Q) x {1})\ Dy (A)

=~ (U,(Q)\U,(A)) x (¢7'Us(A)0)

preserving the quotient measures.

PROOF. To prove ¢ is well defined it is sufficient to prove that for any (uy,us) €
Uy(A) x 071U, (A) we have py(uy, up) = 6; 'uy'd,us € 071U, (A). This is equivalent

to the condition oy (uy,uz)o~t € U,(A), which in turn is equivalent to

O'QOQ(Ul, UQ)O'_l € U(A)

<p2<U1, Uz) € U(A)

But ¢(ur, up) = 0; 'o~tui odius, and since u; € U,(A), we have o~ luj'o € U(A)

and it follows ¢o(uy, us) € U(A) as desired. On the other hand,

opa(up,up)ot = ody o tu o diuge !

= (0610 ) tuy N (od0 ouse ™t

By definition of the Weyl group, o607 € T(A) so (6,071 tu; (06,071) € U(A).

S
Furthermore, cuyo™! € U,(A) C U(A) and it also follows that opy(uy, ug)o™! € U(A).
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Next, for h = (hy,he) € Hs,(Q), we clearly have p(h) = (hy, 1), and

QO(h(Ul, Ug)) = (hlul, 5;1U;1 h;ldghg Ug)
=6

= @(h)p(ur, us).

Finally if we define 1 (uy, us) = (u7", uz), then ¢ o ¢ is an involution, and in particular

© is bijective, which establishes the lemma. U

COROLLARY 2.5.2. Let 6, € T(Q) and o be a relevant element of the Weyl group.

We have a measure preserving map

: Hs,(Q\H(A) = (U-(Q\Us(A)) x (Us(A)\U(A)) x U(A)

(x,y) = (Us(Q)uy, Uy (A)ug, ug)
with ujuy = x and us = 6;1u1_15(,y.

REMARK 2.5.1. The assumption that o is relevant is not really needed here, but it

simplifies slightly the proof.

PROOF. The quotient U,\U may be identified with U,, and the map U, x

U,, (uy,uy) — uyup preserves the Haar measures. Define D,=U, xU,. Using that
o is relevant and hence, by Lemma 2.5.2, that D,(A) = U,(A) x U,(A), we obtain a

measure preserving map

H;, (Q\H(A) — (Hs,(Q\Ds(A)) x D,

H;,(Q)(xy) = (Hs,(Q) (%5, ¥o), (x1,¥1))-
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Composing the first coordinate with the map obtained in Lemma 2.5.3, we get a

measure preserving map

Hs, (Q\H(A) = ((Us(Q) x {1})\D5(A)) x D,

H;, (Q)(x,y) = ((Us(Q) x {1}) (%5, 0; "%, 05Y5), (x1,y1)) -

Finally, composing with U, (A) x U, — U(A), (Yo,y1) = YY1 We obtain
H, (@\H(A) = (Us(@\Us (4))  To(A) x U(A)
H;, (Q)(x,y) — (UU(Q)XU:Xh 5;1X;15crY) .
0

PROPOSITION 2.5.1. Let H - 6, be a relevant orbit. Then the integral (2.38) can

be expressed as

Qi) )= [ st () 1) dudun
Us (ANU(A) JU(A)
Moreover, it factors as Is,(f) = Is,(fe)1s,(fan), where we have set fan =11, fp-
REMARK 2.5.2. Note that the integral is well-defined by Corollary 2.5.1.

REMARK 2.5.3. By Assumption 2.1, the support of fs is included in G°(R) =

dy
{g € G(R), u(g) > 0}. Therefore, if 6, = [ 1 d }, we have I, (fs) # 0 only if
dids
dldg > 0.



5. THE GEOMETRIC SIDE OF THE TRACE FORMULA 119

PrOOF. By Corollary 2.5.2 we can make the change of variable (uy, us, us) = ¢(x,y)

in (2.38). So we get

Is(f) :/ / / 7 ug o ustsy))
(2.45) Us (Q\Us (A) JUs (AU (A) JU(A)
mel (U1U2)¢m2 (5;1U150U3) dUg dU2 dul.

We have

Uy (U1U2) ¥y (8, 'U16,U3) = Y, (U2)tm, (U1)Pm, (0, 'U105) Pm, (us)

- 77Z)m1(u?)wm2(u3>

since (uq,d,'u1d,) € Hs(A) and we assume H - §, is relevant orbit. Reporting this

equality in (2.45), we get
Is,(f) :/ / F (7 0y 05 U3t2) P, (U2)Ym, (us) dus dus.
Us(A\U(A) JU(A)
Write ug = u,uy with u, € U, and u; € U,\U. Then by Lemma 2.5.2 we have
u2_15(,u3 = u;laéuoul = u;laéuoé_léul = u2_16u05_106u17
and by Corollary 2.5.1 we have

¢m1 <u2)wm2 (u3) = wml <u2>wm2 (UUU1>
- ¢m1(u2)¢m1 (5u0(5_1)77bm2<u1) = 1/Jm1 (5u;15—1u2)1/)m2(u1).

Setting u = du 16 1uy we get the result. O
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5.3. The Archimedean orbital integrals. In this subsection we use the
integral transform that was discussed in § 3.4.5 to express the Archimedean part of
the relevant orbital integrals in terms of spherical transform fs, occurring on the
spectral side of the relative trace formula. Moreover, under a conjectural interchange
of integral (due to Buttcane), we obtain a neater expression involving the quantity
foo( V)W (iv, titgh, )W (—iv, toty 11) occurring in the spectral side of the relative

trace formula, together with some generalised Bessel functions K,(—iv,-,1y).

By Theorem 2.3.4 and using (2.28) we have the following

LEMMA 2.5.4. Let H - 6, be a relevant orbit. Then the corresponding Archimedean

orbital integral Is,(fs) is given by the following expression

1A (tmy)

c |m11m12| Us (R

o /foo —iv) Watmltl7¢1)

dv
c(iv)e(—iv)

where the constant ¢ is the one appearing in the spherical inversion theorem and A,

x W(—iv, t;6 tmzulthtz,%)

7 my

¢1(U1) duy,

is the modulus character of the group U,(R)\U(R).

Note that the above integral is well-defined. More generally, let 1) be a generic
character, let o be a relevant element of the Weyl group and let g : ia* — C be a

measurable function. Then by Lemma 2.5.2, for all t € G(R) the integral

/ / G(— i)W (i, yourt, ) dv vo(uy) duy
Us(R\U(R) o/ a*
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is well defined as long as for all u € U,(R) the commutator yuy 'u~! belongs to
1 a

Up(R) = { [ La b} ,a,b e R}. The following conjecture due to Buttcane [But20a],
1

if true, will enable us to take the a* integral out in Lemma 2.5.4.

CONJECTURE 2.5.1 (Interchange of integral). Let g be holomorphic with rapid
decay on an open tube domain of af containing a*, and let t € G(R). Let ¢ be a
generic character, and let o be a relevant element of the Weyl group. Then for almost
all y € Sp,(R) satisfying yuy~tu=t € Uy(R) for all u € U,(R) we have

/ / g(—iv)W (—iv,yout, ) dvip(ur) duy = / g(—iv) Ky (—iv,y,t) dv

Us R\U(R) J a* a*

where

K,(—iv,y,t) = lim h (M) W (—iv,youqt, ¥)1p(uq) duy,
v@wm \ R

R—0

for some fized, smooth, compactly supported h with h(0) = 1. Moreover K, is entire
in v and smooth and polynomially bounded in t and y for R(—iv) in some fized

compact set.

Note that Conjecture 2.5.1 is not needed for ¢ = 1 since in this case we have
U, = U and hence K,(—iv,y,t) = W(—iv,yot,v). Consider now the case of o = J
the long Weyl element. In this case U, is trivial. Let u € U(R) and k € K. Then
changing variables and using the fact that the map GSp,(R) — C : g — W (—iv,yg, V)
is right- K, invariant we have for all u € U(R),t € T(R) and k € K

(2.46) K, (—iv,y, utk) = ¢(u) K, (—iv,y, t).
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Moreover Ka(—iu, y, ) is an eigenfunction of the centre of the universal enveloping
algebra in each variable, with eigenvalue matching those of W(—iv, -, ). It follows

from the uniqueness of the Whittaker model that

KU(_iV’ Y, t) = Ka(_iya Y, ’l/))W(—’LV, t, ¢)
for some function K,(—iv,y, 1) that we call the long Weyl element Bessel function.
K,(—iv,-, 1) is itself an eigenfunction of the centre of the universal enveloping algebra
with eigenvalue matching those of W(—iv,- 1), and satisfies for all u € U(R) the

transformation rule

(2.47) K, (—iv,uy, ) = Y(u)Ko(—iv,y, ) = K,(—iv,youoc ™, ).

For the remaining two relevant elements of the Weyl group K,(—il/, y, -) still satisfies
relation (2.46) for all u € U(R). Thus there is still a factorisation K,(—iv,y,t) =
K, (—iv,y, )W (—iv,t, 1) for appropriate y, where K,(—iv,y, 1) is defined to be the
o-Bessel function. However because of the restriction on y, the conditions satisfied

by K,(—iv,y,1) are more complicated.

Buttcane has announced a proof for Conjecture 2.5.1 in a more general context, but
as far as we are aware the proof is not publicly available yet. Assuming Conjecture 2.5.1
yields a uniform expression for the Archimedean integrals attached to the various

elements of the Weyl group.
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PROPOSITION 2.5.2. Assume Conjecture 2.5.1. Let H - 6, be a relevant orbit.

Then the corresponding Archimedean orbital integral is given by

Is, (fx) = . |m11m12| / foo —iv) Ky (—iv, tmlU(StmgU_l,E)

XW<ZV7tm1t1777Z)1) ( Z.V7tr_1112t27a) ( it

c(iv)e(—iv)

where the constant ¢ is the one appearing in the spherical inversion theorem and A,

is the modular character of the group U,(R)\U(R).

PRrROOF. We apply the statement of Conjecture 2.5.1 to the integral in Lemma 2.5.4

for the function defined by

G(—iv) = ——— (i)W (i, G5 1, o),

c(iv)e(—iv)

which has rapid decay by the rapid decay of fu (Theorem 2.3.1), the explicit expres-
sion (2.22) for the spectral measure, and the estimate for the Whittaker function in

the spectral aspect given by Proposition 2.3.6. 0

5.4. Symplectic Kloosterman sums. In this subsection, the non-Archimedean
part of the orbital integrals is computed when the finite part of the test function

satisfies the following.

ASSUMPTION 2.3. Recall from Assumption 2.1 that we assume f = f Hp Ip
has central character w. We now further assume that there are two coprime positive

integers N and n such that w is trivial on (1 + NZ) N Z*, and the function fg, is
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supported on Z(Ag,)M (n, N) and satisfies

1
Vol(B1(N))

w(z)

fﬁn<zm> =
for z € Z(Agy) and m € M(n, N), where
M(n,N) = {g € G(Ag,) ﬂMat4(Z) g = [* L I} mod N, u(g) € nZX},

and

Bi(N)={geG(?):g= [1] mod N}

REMARK 2.5.4. With this choice, f = ®p fp, and each f, is left and right T',-

mvariant, where

1 ¢ —cx

In particular, if x,c € Z, then I'y, contains the matriz {m Lo } . Thus if ¢ is

T
1
1 ¢ —cx

right-I'p-invariant for all prime p, changing variables u — u {x oo ] in the integral

1
expression of the ¥y, -Whittaker coefficient of ¢, we get

Yy (9)(8) = O(max + mac) Wy, (6)(8)

for all g. Therefore Wy, (¢) = 0 unless my and my are integers. Henceforth, we shall

assume my and msy are two pairs of integers.

REMARK 2.5.5. Note that I' = Koo [ [, Tp(IV) is contained both in the Borel, Klin-
gen, Siegel, and paramodular congruence subgroup of level N, thus any automorphic

form that is fixed by one of these groups is also fixed by I', and hence will appear in
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our formula. One could fix a different choice of congruence subgroup, and accordingly

define different types of Kloosterman sums.

Under Assumption 2.3, the element ¢; in Lemma 2.5.1 must satisfy more conditions

in order for the corresponding orbital integral to be non-zero.

dy
LEMMA 2.5.5. Let 0 € Q, 6; = [ ! do ] such that the orbit of 6, = 0dy is
didy

relevant. Assume Is (fan) # 0. Then there is an integer s such that didy = +3.

PROOF. For all u € U(A) and u; € U,(A)\U(A) we have p(ud,uy) = dids. So by
Assumption 2.3, ud,u; belongs to the support of f only if dydy € AEHZX n. Since dyds
is a rational number, there must be a rational number s such that dydy = +%. But
the second diagonal entry of so~tud,u; is s therefore s must belong to Z, hence s is

an integer. O

Henceforth, we shall assume ¢ is as in Lemma 2.5.5. By Remark 2.5.3, we could
also assume that dydy > 0 (which would then fix the sign in the equality didy = £
above). However, we do not need doing so for now, and we shall not, in view of

possible applications with a different choice of test function at the Archimedean place.

REMARK 2.5.6. Consider the case N =n=1. Then
M(n, N) = GSp,(Z) = [ [ GSp4(Z,).
p

For simplicity, set n = 0,, and if p is a prime and x € G(A), write x, for the
p-th component of x. Also write 1,1 and 1, for the local p-th components of the

characters Vm, and m,, respectively. In particular, these characters are trivial on
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U(Zy,). Then we have

T Vol(BL(N)) gy, (2) (SUNV) U, (U)Um, (V) du dv
VOl(B1(IN)) Ju (s \0 () 0 () G, (2) (SUIV) Yy (U)Ym, (V)

/ / Lasp,(z,) (8pUpTipVp) Vp,1 (Up)Up 2 (vp) duy, dvy,.
Us (Qu)\U(Qp) JU(Qp)

I5,(fon)

1
- H Vol (T, (V)

For all but finitely many primes p, the entries of spn, are in Z, . For those primes, by
the explicit Bruhat decomposition (see Lemma 2.5.7 below), the condition s,u,n,v, €

GSp4(Z,) is equivalent to u, € U(Z,) and v, € U,(Z,)\U(Z,), and hence

/ / ILGSp4(Zp)(Spupnpvp)l/)nl(up)wpﬁ (Vp) duy dv, = 1.
Us (Qp)\U(Qp) JU(Qp)

For the remaining primes p, noticing that U,(Q,)\U(Q,) may be identified with the
subgroup U,(Q,) = U(Q,) No"U(Q,)o}, the local integral equals the Kloosterman
sum K1(n, ¥p1,¢p2) as defined in [SHM20] when n € Sp,(Q,) (note that we denote

here by U, what is denoted there by U,—1, and conversely).

We now treat separately the contribution from each relevant element of the Weyl
group from a global point of view. To alleviate notations, we shall not include N and

w in the argument of the Kloosterman sums we proceed to define.

5.4.1. The identity contribution.
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DEFINITION 2.5.2. Let a,b,d, N be integers such that d | N. Then the following

sum is well-defined

B ax + by
S(a,b,d,N) = Z e( N )

z,y€Z/NZ
dlzy

LEMMA 2.5.6. Let a,b,d, N be integers such that d | N. Write a =[], p{*, where

pi are distinct primes and a; are integers, and similarly for b,d, N. Then we have
S(a,b,d,N) HSpZi,pf",pfi,pri).

Moreover if n is a positive integer, i, j, k are non-negative integers with k <n and p

1$ a prime, then we have
S’ P, 0" p") = p* (1 = p~H) max(0,k + 1 — max(0,n — i) — max(0,n — j))

on—k—1
+p™ Lizp — 1 i<n
jzn <n
z+g>2n k—1

In particular, it follows that S(p',p’, p*, p") is non-zero only if
(2.48) (n—i)+(n—7) <k+1.

PRrROOF. The factorization is immediate from the Chinese remainder theorem.
Now let us evaluate S = S(p’, p’, p*,p"). We have (here, abusing notation slightly,
we set v,(0) =n)

‘T ‘r
s=y ¥ () X (B)r © o(5) = (B

h=0 z€Z/p"Z yEL/p"L
vp(z)=h vp(y)>k—h vp(z)>k+1
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Now if ¢ is any non-negative integer, we have

pjy)_ p"tif j ¢ >nand {<n

> (5

yEZ/p"L 0 otherwise.
vp(y) >4
Hence
k—max(0,n—j) iy
S — Z pnkarh Z e (p_n> _|_p2n7k—11 o
h—0 n p itk+1>n
= x€L/p™ L k<n
vp(x)=h
Now

3 e(ﬁ): 3 e(fﬁ)_ 3 6(&)7
n p" n p" n p"

T€Z/p" L x€L/p" L z€Z/p"Z

vp(z)=h vp(z)>h vp(x)>h+1

hence the h-sum becomes

k—max(0,n—7)

>t -p)

h=max(0,n—1)
2n—k—1 2n—k—1
- P ]]-Ognfiflgkfmax(o,nfj) +p :H-kfmax(o,nfj)zna

SO

S =p* k(1 - p ) max(0, k + 1 — max(0,n — i) — max(0,n — j))

2n—k—1
+p (1 jo>n = Locn—i—1<k—max(0,n—j) + Li—max(0,n—j)=n)-
i+k+1>n
k<n

Finally, it can be checked by inspection of cases that

1 jzn ]]-Ognfiflgkfmax(o,nfj) + ]]-kfmax(l),nfj):n = ]]-iZn -1 i<n
i+k+1>n jzn J<n

k<n i+j>om—k—1
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d1
PROPOSITION 2.5.3. Let 0 = 1, 6; = { 1 d } with didy = +5 for some
dids

integer s. Then Is,(fan) = 0 unless all of the following hold:

(1) s divides n,
(2) di = 21 and sdy is an integer dividing n,

maj

(3) d2 — Injimjo

mojmoy

If all these conditions are met, let d = ged(s, sdys,da, 2), and D = ged(sdy, ). Then

wn(s) nd n
2.49 I, (fim) = — S (my —, myzsdy, d.n)
(2.49) i fin) = o G, T} (s iasc )

where wy (s) = [,y wp(s)-

REMARK 2.5.7. The integer s is only determined up to sign. However, expres-
sion (2.49) does not depend on the sign of s, since S(a,b,d,n) = S(a,—b,d,n) and
wy(—1) =w(-1)=1aswy(—1) =1 for allpt N.

REMARK 2.5.8. The two pairs of integers m; and ms essentially play symmetric
roles in our formula. More precisely, for our choice of test function f, the op-
erator wN(n)%R(f) is self-adjoint. Thus exchanging m; and my amounts to take
the complex conjugate of the spectral side and multiply it by wy(n). Hence the
geometric side, and in particular the identity contribution, should enjoy the same

symmetries. Proposition 2.5.3 says that the identity element has a non-zero con-

tribution only if there is an integer t dividing n with 3 = ig—;;t and such that
s = $—it 15 also an integer dividing n. This condition s indeed symmetric, as

interchanging m; and my amounts to replace t with 3 and s with t. In addition,

we have S <m11ﬁ,m12t, d, n> =9 <m21$,mgg%,d, n). Finally, using that
’s 't
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2, multiplying ﬁ by the factor ‘—13| that comes from the

4 3

3 My, Moy
1

my;myy

3

3 —
|S dll - mj,; mj,

. . » . 1 _ _3
Archimedean part in Proposition 2.5.2 gives n™2 (my;my; )~ 2|myomygy| 2.

REMARK 2.5.9. In the case n = 1 we must have s = £1 and hence my; = tmy;.

m? mio

Together with the condition didy = £

_ n ; : _
miimes this also gives mis = +mos.

REMARK 2.5.10. Using condition (2.48) we find that the contribution from the

identity element is non-zero only if for all prime p | n we have
Up(8) < vp(ma21) + vp(mar) + min(0, vy(ma1) — vy(myy)) + 1,
which in turn implies that for all prime p we have
vp(n) < 2min(v,(myy), v,(Ma)) + v, (My2) + v,(Mos) + 1.

PROOF. The finite part of the orbital integral corresponding to the identity

element reduces to

I () = [ S0, (o) = [ Hsus)im, () da

Assume it is non-zero. Note that by Lemma 2.5.5 we have p(sud) = n. Then

A

by Assumption 2.3, sud € Supp(f) if and only if sué € Maty(Z). In particular,

each entry of s§ must be an integer. Furthermore by Lemma 2.5.1 we must have
- d,

0 = 1 d with d; = 2L dy = P2 50 we learn that sd; = s € Z,

i d1d2 21 mo11ma2 ma1

s | n, and sd; | n. Now let us examine the non-diagonal entries of sud. Write

[1 ca—cx
T

u=|*t¢ b } . Then the following conditions must hold:

1

(1) sdyz € Z and v € Z,
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(2) CliECEZ
(3) a’iﬁaEZ
(4) 2(a—cx) €2,
(B) Y =2heZ

Condition (1) is equivalent to = € %Z, where D = gcd(sdy, 2) (note that sd; |

sD). Set 2/ = Dxz. Then condition (4) gives dia’ — Lz’ € Z. Combined with

conditions (1), (2) and (3), this is equivalent to ¢z’ = Da’ mod 2. Now, ¢y, (u) =

_ __wn(s) .
Osn(mypz + myoc) and f(sud) = VB Therefore integration with respect to
. 5% wn (3) _n wn (5) . . _ 1
b gives Vol <HZ> Vol By () S Val(By () Next, changing variables x 5¥ and

c= Sdl d, for fixed a the x, c-integral is

(s) x’ sd;
I Osn — dz' dc
(a) VOI 32d1 / Z Da’ mod D i (mll D - 2 n ‘ ) v

2 72
s°dy

= My, and since 0y, is trivial on 7. the integrand is
constant on cosets x’ + sdlz and ¢ + sdlz. As sdy | sD, it is also constant on cosets
@' + sDZ and ¢ + sDZ. Therefore we get
wn($) n? (mnl’ m123d1y)
I(a) = — e + )
(@) Vol(B,(N)) |Ddys*| 2 D n

z,y€Z/sDZ
zy€Da’+ %Z
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Finally the a integrand depends only on ¢’ mod dQIZ, thus, setting d = ged (D, d—Dl> =

ged(s, sdysdy, ) we get

LUN(S) myx mlgsdly
(fﬁ) Vol( ( |35D2d1 Z Z 6( D + n )

GZ/ 7 myGZ/sDZ
4 xyEDa—i-d 7

wn($) n? (muiU m123d1y)
d e +
" Vol(By (V) 15D 2 D n

x,y€ZL/sDZL
Ty€edZ

_ W (8) 3n d Z o (mnx i m12sd1y> . ]
VOI(Bl<N)) |S d1| z,y€Z/nZ D .
Ty€edZ

5.4.2. The contribution from the longest Weyl element. The following lemma
makes it explicit how to compute the Bruhat decomposition for elements in the cell
of the long Weyl element. One could do the same for each element of the Weyl group,
but, as it is straightforward calculations, we only include this case for the sake of

clarity in latter arguments.

LEMMA 2.5.7. Let IF be a field, and let g € GSp,(F). Assume

1 c1 al t1 to 1 Cc2 a2—C2X2 ail ai2 B
_ z1 1 ai+eciz1 b1 J _1 x2 1 as bo _ [A B] _ a a
g = 1 —z1 taty 1 —z9 — lCc DJ — | ¢ cizda1 di2 | -
tats !

1 1 €21 €22|ds1 dago

Set

Alz[an a12], AQI |:012 d11]

€21 €22 Cc292 d21 °
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Then

R R O det(Ay) _ det(Ay)
! Con’ P gy det(C)’ 2 det(C)”’
d d
alzg , = 2L bl_@ by = 22
C22 C22 C22 C22

Moreover, if g = [ 5] € GSpy(F) with C = [} &2] satisfying det(C') # 0 and
Coo # 0 then g € UJTU.

ProOF. The first claims follow by computing explicitly

C=["I™" Lllaad=["0m 2],
A1 = [01 all][itl ftg][xlg 1]7 AQ = [1 _fl][itl 7t2][1 Zz]a
D = [1 _ivl][itl 7t2i| [zczi az_bl;2x2i|7 A = [a1+cé1a:1 Z;][itl 7t2i|[x12 1]'

To prove the last claim, it suffices to show that provided det C' # 0 and coy # 0,
there exist at most one g € GSp,(IF) with the specified values for u(g), C, a2, ass,
do1, doa, det(Aq) and det(Asy). Since cag # 0, the values of a1, ¢ and det(A;) =
@11C29 — Co1a12 determine the value of a;;. The equation "AC = TC'A then gives
(12C11 + 22C21 = A11C12 + A21Co2, Which determines the value of as; hence of A. The
same reasoning using det(A;) and CTD = DT instead similarly fixes D. Finally

the equation " AD — TCB = u(g) fixes B since we are assuming C' is invertible. [
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DEFINITION 2.5.3. Let s, d, m be three non-zero integers and define

CJ(87d7 m) = {g = [é B] : det(C’) = d7 Co2 = _57/1’(g) = m}
and
['y(N,s,d,m) = B1(N)NMaty(Z) N Cy(s,d,m).

For g = [A 5] € GSpy, let Ay = [ &2] and Ay = [ 2 géﬂ Then, for m;, my two

pair of non-zero integers, we define the following generalized twisted Kloosterman

suim

KIJ(mlamQa Sada m) =

Z D (as)e (m11C12 — My Coy n myo det(Ay) — myy det(AQ)) .

S d
geU(Z)\I'y(N,s,d,m)/U(Z)

REMARK 2.5.11. Using Lemma 2.5.7, we can see that Kly(my, my, s,d, m) is well
defined. Indeed, matrices in I'y(n, N,d, s) are of the form

d
s

gZU(:Bl,al,bl,cl)J[ * ms IU(xz,az,bg,Cz)-

S

Then <2 = x1,“2 = —xo, % =c; and w = —co. Now multiplying g on the

left (resp. on the right) by an element of U(Z) does not change the classes of 1 and
¢y (resp. xo and cy) in R/Z.

dy
PROPOSITION 2.5.4. Let 0 = J, 01 = [ 1 o } with didy = *3 for some
dida

integer s. Then we have Is, (fan) = ﬁ Kly(my, my, s,d;s?, s%didy).
O. 1

REMARK 2.5.12. The set T'y(N, s,dys%, s*dyds) is non-empty only if N divides s
and N? divides dys°.
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PROOF. The finite part of the orbital integral corresponding to the longest Weyl

element reduces to

Is,(fan) = /U(Aﬁn) /U(Aﬁn)f(U1J5U2)¢m1(U1)¢m2(U2)dUl duy
_ / / £ (51002, (01) G (02) s,
Ulan) JUBa)

By Assumption 2.3 we have suiJduy € Supp(f) if and only if su;Jous = [A 5] €

Z(Agn)M(n, N). In this case, we have f(su;Jouy) = %, and Lemma 2.5.7
ol(B1

shows that

¢ (U )’l/] (u2) —e (—m11012 + My Co1 mio det(A1> — My det(AQ))
m3 \Y1/)%m2 = ‘

Co2 det (C)

A

Moreover, f is left and right U(Z)-invariant, and the characters ¢y, and ¢y, are trivial
on Z. Therefore, if we consider the map ¢ : U(Agy) X U(Agy) — G(A), (ug,uy) —

suiJduy, we have

) Trten)
Is, (fn) = Z . Vol(By(N))

U(Z)\(M (a,N)NIm())/U(Z)

<e —INqCio + Mo Coy +m12 det(Al) — IMyo det(Ag)
C29 det(C) ‘

Now by Lemma 2.5.7, Im(p) = C)(s,d;s?, s*dyds). Therefore,
U(Z)\(M(n, N) 0 Im())/U(Z)
may be identified to U(Z)\I';(N, s,d;s%, s?dydy)/U(Z). O

5.4.3. Contribution from o = $15987.
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DEFINITION 2.5.4. Let s, d, m be three non-zero integers and define
Ciai(s,d,m) = {g =[& F] : det(C) = 0,20 = —s,det(As) = d, u(g) = m}
and
F121 (N, S, d, m) = Bl(N) N Mat4(Z) N 0121<S, d, m)

For g = [4 8] € GSpy, let Ay = [“2 "], Then we define the following generalized

c22 d21

twisted Kloosterman sum

K1121(m1,m27 s,d, m) =

Z W(am)e (mnclz ; my;Co n mjo d§t<A3)) .
geU(Z)\I'121(N,s,d,m) /U, (Z)

By a similar argument as in the case of the long Weyl element, Kly9; (m, my, s, d, m)
is well-defined, and together with the condition on ¢ from Lemma 2.5.1 we get the

following.

di
PROPOSITION 2.5.5. Let 0 = 518281, 01 = { 1 d } with didy = £ for
dids

some integer s and dymys = domygs. Then we have

1
I(;a (fﬁn) = m Kllgl(ml, msy, S, d282, S2d1d2).

REMARK 2.5.13. The set T'121(n, N, s,dys?, s%dyds) is non-empty only if N divides
s and N? divides dys>.

5.4.4. Contribution from 0 = $25155.
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DEFINITION 2.5.5. Let s,d be three non-zero integers and define
Cora(s,d,m) = {g = [& 5] : det(C) = —d, c22 = 0,c21 = —s, pu(g) = m}

and

P212(N, S, d, m) = Mat4(Z) N B1 (N) N 0212.

We define the following generalized twisted Kloosterman sum

K1212(m17 my, s, d7 m) =

- mi ey — Moady; My det(4)
Z Wy (ag)e - .

9€U(Z)\T'212(N,s,d,m) /U s (Z)

By a similar argument as above, Klsjo(my, my, d, s) is well defined, and we have

the following.

d1
PROPOSITION 2.5.6. Let 0 = s18281, 01 = { 1 d } with dydy = +% for
dids

some integel s and mi; = —dlmgl. Then we have
foin m;, my, Sd1,a18°,S .
oo \Jfi 1( 1(N)) 212 1 2 1, %1 142

REMARK 2.5.14. The set T'y15(n, N, dys%,dys) is non-empty only if N divides dys
and N? divides dys>.

6. The final formula

We now assemble the material from previous sections to obtain our relative trace

formula. Let N > 1 be an integer. We define the adelic congruence subgroup
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to be matrices of the form g..gs, where g, € K and ggz, € {g € G(Z) :
= [ ! z Z] mod N}. Fix a character w : Q*R*\A* — C, that we may see as a
character o*f the centre of G(A). Assume that w is trivial on (1+NZ)NZ*, and define
wy(t) = ][, yw(tp). For each standard parabolic subgroup P = NpMp (including
G itself), consider the space .#p defined in Section 4.1. For each character x of the
centre of Mp whose restriction to the centre of G' coincides with w, let €p(N, x) be
an orthonormal basis consisting of factorizable vectors of the subspaces of functions

¢ in Jp that are generic, By(N)-fixed, and have central character x. Specifically,

o If P =G then €(N,w) = &p(NV,w) consists of cuspidal eigenfunctions of the
centre of the universal enveloping algebra in L?(Z(R)G(Q)\G(A),w)Br™V),

o If P = B, each such character x may be identified with a triplet of characters
(w1, ws,ws3) satisfying wjwsw? = w. Choose a set of representatives S =
{ky, -+ ,kq} of (K N B(A))\K/B(N). Then there is a basis (¢;);<;<q of C°

such that functions in €p(N, wy, ws,ws) are of the form
P (bkiy) = x(b)e;(k;)

for b € B(A), v € By(N).

e If P = Py, each such character y may be identified with a pair of characters
(w1, ws) satisfying wyws = w. Choose a set of representatives S = {ky, -+ ,kq}
of (K NPx(A)\K/Bi(N). For 1 <i <d, consider the compact subgroup
of GL,y given by C; = Projg;2 (StamepK(A)(ki)). Let d; = dim(7“) and
d, = Zf d;. Then, for each cuspidal automorphic representation m of GLy

with central character w; and whose Archimedean component is a principal
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series there is a basis (uj)lgjgdﬁ = ((uj'?i)lgigd)lgjgdﬁ of Hz 7TCi such that

functions in ¥p(N,ws,ws) are of the form

o5 . (pkiy) = wa(p)uys(Proji(p))

for p € Px(A), v € B1(N). In particular each v, ; is a GLy adelic Maaf} form.
e [f P = Pg, each such character xy may be identified with a pair of characters
(w1, ws) satisfying wiw3 = w. Choose a set of representatives S = {ky,--- , kq}
of (K NPs(A))\K/Bi(N). Keeping notations of § 4.3.3, for 1 <14 < d, con-
sider the compact subgroup of GLy given by C; = Projg’st (StamepS(A)(ki)).
Let d; = dim(7%) and d, = Zf d;. Then, for each cuspidal automorphic
representation m of GLy with central character w; and whose Archimedean

component is a principal series there is a basis (u;)1<j<a, = ((4))1<i<d)1<j<dx

of [T, 7% such that functions in &p(N,w;,ws) are of the form
75 (Pki7) = wa © fu(p)u;i(Projp ? (p))
for p € Pg(A), v € Bi(N). In particular each u; ; is a GLy adelic Maa$ form.
Now fix an integer n > 0 coprime to N. Consider
M(n,N) = {g € G(Ag) N Maty(Z) : g = F L z %} mod N, u(g) € nZX} .
Define the n-th Hecke operator of level B;(NN) by

Todl(g) = /M e
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Then for every standard parabolic subgroup P, for every element u € €p and for
every v € iaj, the Eisenstein series E(-,u,v) is an eigenfunction of 7,. We shall

denote the corresponding eigenvalue by A,(u,v). Then we have the following.

THEOREM 2.6.1. Let my, my be two pairs of non-zero integers, t1,to € AT. Let h
be a Paley- Wiener function on ac and let ¢ be the constant appearing in Theorem 2.3.2.

Then we have

c(Beusp + X5+ 2Kk +Xg) = (K1 + K21 + Koo + K ).

Vol(B1(N))
The expression Yeysp + 2p + Ui + Xg s given by

cusp Z h Vu n ( )(tlt )%( )(t2tr_nlg)7

u€g(N,w)

1
S=g Y 3 / B (1, 1)

a*
wiwawi=w uE€YR (N,w1,w2,w3)

X Wy (B (5 u,v)) (trt )W (E( u,v)) (o, ) dv,

> > h(v + vi(su)) da(u, v)

_ ik
WiW2=w uEGp (N,w1,w2) Ok

X Wy (B (5 u,v)) ()W (E( u,v)) (tatg,, ) dv,

Z > / hv + vs(sa)) Aa(u, v)
w1w27w UETpg (N,w1,w2) iag

X Wy (B (- u,v)) (1t )W (E (- u,v)) (o) dv,



6. THE FINAL FORMULA 141
where v, (resp. S,) is the spectral parameter of the representation of GSps(R) (resp.
GLs(R)) attached to u, vk and vs are given by Propositions 2.4.4 and 2.4.6. On the
right hand side,

e K is non-zero only if there is an integer t dividing n with 3 = x—gt and
such that s = $—it 18 also an integer dividing n, wn which case, setting

d=ged(s, 2,t,7) and

—F _1 _ _3
T(n,m;,my) =d X wy(s)n™ 2 (mymy) 2|H112H122| ?

x S (mn , m12t, d, n>

-
ged(t, %)
we have
K =T h(— i)W (i, 4=t YW (=i, ) by, ) ——
1 =T'(n,m;, my) B (i)W (iv, ty, 1, ¥) (—ZV,tm2t27¢)m-
e The contribution of the long Weyl element is

KJ = ZKIJ(mlamQasakvn)]J(h) (k E) ’

27 k
N|s

N2|k

e The contribution of s15981 is non-zero only if n E—;z = b? for some rational

number b, in which case it is given by

n b
K91 = myy ]\%;)Klml(mhmm NE, ka’,n)Ilm(h) (m, m) )
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e The contribution Koo of sos189 1s given by

my oMMy my; n my
mo; E Kla1o (m17m27_8_7_5 —,1n 1212(71) —— 5|

mo; N|smij
m21N2\s2m11

where we have defined 1,(h)(dy,ds) as the integral

/ h(— i)W (iv, 1, )

d B J
X / w (_i’/a tml10—|: ! ds ]tmzultmﬁtz, ¢> Y (uy) duy —V
Us (R)\U(R) dydy c(iv)e(—iv)

Moreover, if Conjecture 2.5.1 is true then we have

i _
h(—iv)K, (—iu, t;fla{ 1 d }tma_l,z/))
dids

x W (iv, tyth )W (—iv, tot ) )

mi’ msa)

L0 dz) = [

a*
dv

c(iv)e(—iv)’

where the generalised Bessel functions K, have been defined in § 5.3.



CHAPTER 3

Equidistribution of Satake parameters of automorphic forms

for GSp,

1. Introduction

The distribution of Satake parameters of automorphic forms is a classical problem
in number theory. In the case of GLo, the Sato-Tate conjecture states that, for a fixed
typical newform wu of trivial central character, the Hecke eigenvalues A\, (u) (which in
this case are a,(u) + a,(u)™!, where a,(u) are the corresponding Satake parameters)
equidistribute with respect to the Sato-Tate measure dugr as p varies among primes
not dividing the level. The Sato-Tate conjecture is known for holomorphic forms of
weight k£ > 2 [BLGHT11]. This is usually referred as the “horizontal” distribution

problem.

On the other hand, one can fix the prime p and allow u to vary, making the problem
amenable to the (Selberg or Arthur) trace formula. This easier problem is known as the
“vertical” distribution problem and it asks for the distribution of the Satake parameters
a,(u) as u varies and as the weight or level tends to infinity. This problem has been
addressed for GL, independently by Bruggeman [Bru78| and Sarnak [Sar87] for
Maa$ forms and by Serre [Ser97] and Duke-Conrey-Farmer [CDF97] for holomorphic

143
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forms. The relevant measure in this case is not the Sato-Tate measure, but the p-adic

Plancherel measure, given by dj' () = %dﬂw (7).
p2—p 2))—x

A similar problem, the weighted vertical equidistribution problem is obtained by
replacing the use of the trace formula by a relative trace formula. This corresponds
to count every automorphic form with a certain harmonic weight coming from
the relative trace formula, and to ask for the weighted vertical distribution of the
Satake parameters. This has been done by Knightly and Li for holomorphic forms
using the Petersson formula [Li04, KLO8] and for Maaf forms using the Kuznetsov
formula [KL13]. Interestingly, in the weighted vertical equidistribution problem, the
limiting measure is the Sato-Tate measure usr, independently of the choice of the

prime p not dividing the level.

Moving away from the case of GLs, the unweighted vertical equidistribution
problem has been tackled for groups admitting discrete series at the infinite place by
the work of Shin [Shil2] and Shin-Templier [ST16], and by Matz-Templier [MT21]
for Maaf§ forms on SL,, / SO,,. Kim, Wakatsuki and Yamauchi [KW'Y20] have also
investigated the situation of Siegel modular forms on GSp,. As in the case of GLy, in
this type of problem,the limiting distribution is the p-adic Plancherel measure /Lgl,

which converges to the Sato-Tate measure pgr as the prime p tends to infinity.

On the other hand, the weighted vertical equidistribution problem has been
treated for Siegel modular forms by Kowalski, Saha and Tsimerman [KST12] and
Dickson [Dic15] in the case of GSp,, and by Knightly and Li [KL19] for GSp,,.

The situation of Maaf} forms is known by [BBR14] for GL3, and conjecturally for
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PGL,, by [Zho14]. Here again, the situation is analogous to GLy in that the limiting

measure is the Sato-Tate measure pgr.

In this chapter, we apply the Kuznetsov formula to treat the weighted vertical
equidistribution problem for the whole generic, spherical at infinity spectrum of
GSp, for the group B;(NV). In order to obtain a weighted vertical equidistribution
for Maafl forms on GSp,, we would still need to bound the contribution from the
continuous spectrum. This is work in progress. We access the Satake parameters via
the local Whittaker function, using the Casselman-Shalika formula. To derive the
equidistribution result, we need to show that the set of test functions we can generate
this way spans the relevant space of test functions. More precisely, our approach allows
us to choose the test function to be an arbitrary (2-invariant Laurent polynomial,
which is shown to be sufficient by a Stone-Weierstraf3 density argument. This is
done in Section 3 below. Finally, for a fixed Laurent polynomial g, the non-diagonal
contribution on the geometric side is shown to vanish identically for N large enough
(in terms of g). In other words, the first “moments” of the weighted distribution
of the Satake parameters coincide exactly with the corresponding moments of the
Sato-Tate distribution, until a certain point that depends on N and that goes to

infinity with N.

2. Satake parameters

We follow the exposition of [Pit19] and [KST12|. Let p be a prime number. Let
0, X1, X2 be unramified characters of Q). They determine an unramified character

of the Borel subgroup B of GSp,(Q,) that is trivial on the unipotent radical, and
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T

whose values on the diagonal are given by y <{ S 1 ]) = o(t)x1(z)x2(y).
The representation x; X x2 % o of GSp,(Q,) obtained by rtlyormalized induction from
x has a unique subquotient 7(o, x1, x2) that is spherical, meaning it contains a
non-zero vector fixed by K, = GSp,(Z,). One can check that the central character

of (o, X1, X2) is 02x1X2. Moreover, two such representations are isomorphic to each

other if and only if their inducing characters are equal modulo the action of the Weyl

group.

It is known that any irreducible admissible representation 7 of GSp,(Q,) that is
spherical is of the form (o, x1, x2) for some unramified characters o, x1, x2 of Q).
Now any unramified character of Q, is determined by its value at p. Hence 7 is
determined by the tuple of non-zero complex numbers (o (p), x1(p), x2(p)) modulo
the action of the Weyl group. If moreover 7 has trivial central character, it holds
that o?(p)x1(p)x2(p) = 1, hence 7 is completely determined by the pair (x,y) =
(o(p),o(p)x1(p)) € C* x C*, modulo the action of the Weyl group. These are the
Satake parameters of 7. The action of the Weyl group is generated by the two

transformations

(3.1) (z,y) = (z,y~ ") and (z,y) — (y~ ' 271).

Let 7 be a spherical irreducible admissible representation of GSp,(Q,) with trivial
central character and assume moreover that 7 is unitary and generic. By [PS09,
Proposition 3.1], its Satake parameters (x,y) must satisfy p~2 < |z, |y| < p? together

with one of the following conditions:
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) € St x S, the tempered case,
)eS'xRor (z,y) € R x S,
yE R = {(Az,\712),A> 0,2 € S'} or (z,y) € Ry = {(\z,\271), A >

—~
[\
~—
—~
8
< < <

Accordingly, we define the space % of putative Satake parameters to be the quotient
of
X=C,Nn((S1 xSHU(S'xR)U(R xSYUR UR, U (R x R))

by the action of the Weyl group described in (3.1), where C,, is the compact set
{(21,2) € C2,p~2 <|z1],|2| < p2}. The following remark is trivial but turns out to

be important for later use of the Stone-Weierstrafl theorem.

REMARK 3.2.1. If (z,y) € ¥ then T is equal to either x, —x, x=%, y or y~ L.

We parametrize the subset of % corresponding to tempered representations (S! x
SH/Q c % by (St x SH/Q = {(e?,¢e?2) : 0 < 6, < 6, < 7}. The Sato-Tate
measure is supported on the tempered spectrum, and, in these coordinates, it is

given by
4 22 i 2
(3.2) dpsr(6h,02) = p(cos 01 — cos 03)° sin” 0y sin® Oodbdbs.
3. The Whittaker function

Let 7 be an irreducible spherical admissible generic representation of GSp,(Q,)

with trivial central character. Let (x,y) be the Satake parameters of 7, and let
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the normalized Whittaker function 7 (z,y) be the unique right-K,-invariant
function in the Whittaker model of 7 that satisfies #'(x,y)(1) = 1 (the fact that
a non-zero K ,-fixed vector in the Whittaker model of 7 doesn’t vanish at 1 follows
from the proof of [RS07, Corollary 7.1.5]). By uniqueness of the Whittaker model,
the map (x,y) — % (x,y) is invariant by the Weyl group. By the Casselman-Shalika
formula [CS80], see also [RS07, Formula (7.3)], the value of % (x,y) on diagonal
matrices is given by

(3.3)

. papb % if b>aand 2a>c
Wop(x,y) =W (x,y) oo — 0,
pc—b

0 otherwise,

where for all integers a, b, ¢ we define

Wa,b,c(«r, y) = p—2b—a+3c/2x—3((xb_a+1 - :L’a_b_l)(ya+b+2—c o yc—a—b—2)

(3.4)

b—a+1 ya—b—1>(xa+b—c+2 o c—a—b—Q))'

—(y T

We now prove the relevant results of functional analysis we need about the Whittaker

function for our equidistribution result.

LEMMA 3.3.1. The functions (Wypc)e<a<o  span the space V. C Clz, 7y, y7]
ce{0,1}

of Laurent polynomials P(x,y) that satisfy P(x,y ') = —P(x,y) and P(y~ ', 27 !) =

—(zy)*P(z,y).

PRrOOF. The action (3.1) of the Weyl group on Satake parameters extends to
an action on Laurent polynomials, and it is clear that any Laurent polynomial

in V' is a linear combination of Laurent polynomials of the form L, ,,(z,y) =
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_ . 2b+a—3c/2
T 32069 sgn(o)o(z"y™) with 0 < n < m. But L,, = p*™ 3¢/ Wape where

a:%ﬂ—l’b:’”mT*C_?’andc:(n—i—m) mod 2. 0

LEMMA 3.3.2. The space of functions spanned by (%71,70)05?9} s dense in the set
ce{0,1

C(Y) of continuous functions on ¥ .

ProOF. Using notations of Lemma 3.3.1, we clearly have Wy o(z,y)C[X +
Y, XY] C V, where X = 2+ 2! and Y = y + y~!. Hence every element of
C[X +Y, XY] can be written as a linear combination of functions of the form %, .
with 0 <b—a+1<a+b+2—candc € {0,1}. So it suffices to show that
C[X + Y, XY] is dense in €(%). By Remark 3.2.1, the algebra C[X + Y, XY] is
stable under complex conjugation, hence by the Stone-Weierstrafl theorem, it suffices
to show that the two functions X + Y and XY separate the points on %. But, for

X+Y =u
fixed (u,v), the (at most) two solutions for (X,Y’) of the system

XY =v

are symmetric to each other, and each value for X (resp. for Y') gives two possible
solutions for x (resp. for y), that are inverse from each other. Thus the (at most)
eight solutions for (x,y) are equal modulo the action of the Weyl group, and hence

represent the same point in %. 0

LEMMA 3.3.3. Let ay, by, ¢y, as, by, co be integers and, for ease of notation, set
n; = bj—aj+1 and m; = aj+bj—cj+2, and h = 2(b1+b2)+(a1—|—a2)—3(01—|—02)/2.

Assume 0 < n; <m; and ¢; € {0,1} for j =1,2. Then

5 lifa1:a2,61262 and61202
p / %lel,cl %12,172,02 dMST =
4

0 otherwise.
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PROOF. Note that Wy (e, e2) = —8e73%1 sin f; sin fy(cos §; — cos fy). Hence
combining the definition of the Sato-Tate measure (3.2) with formulae (3.3), (3.4)

the integral we have to evaluate becomes

4 [ . . .
F/o /0 (sin(nq6;) sin(mq6y) — sin(mq6;) sin(nq63)) x - -
-+ X (sin(ngfy) sin(mebs) — sin(msb;) sin(nqbs)) dby dbs

1
= 2—7T2[21(n1,n2)l(m1, my) — 21(ny, mo)I(my,no)),

where

sgn(mn)m if |n| = |m|

I(n,m) = /0 7rsin(né’) sin(m@) df =

0 otherwise.
Since n;,m; > 0, the term I(ny,n2)I(my, my) is non-zero if and only if ny = ny
and m; = my. The term I(ny, ms)I(my,ns) is non-zero if and only if n; = my and

my = ng, but this contradicts the assumption that n, < ms and n; < my. L]

4. Vanishing of the geometric side

The contribution from the non-identity elements in the geometric side is given
by sums over diagonal matrices  whose entries satisfy various divisibility conditions
modulo N. On the other hand, the test function f., is compactly supported modulo
the centre, and it so is its integral transform appearing on the geometric side. The
upshot is for N large enough, every ¢ subject to the relevant divisibility conditions
lies outside of the support of the corresponding integral transform, and thus the

corresponding geometric terms vanishes. We now make this argument more precise.
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LEMMA 3.4.1. Let K C GSp,(R) be compact. Let X = R*K. There exists a

constant C'x such that every element x € X has a Bruhat decomposition x = uiodus

where the entries of ——09 satisfy

Azl

e the second diagonal entry lies in [—Cy, Ck],

e if jo is the unique index such that 04_]%] =1, then the jo-th diagonal entry lies

m [—OK, OK]

PROOF. Let K' = {+ \l(k)|k : k € K}. Then K’ is itself compact, and in
m

particular the elements of K’ have bounded entries. Now let x = zk with z € R and

ke K. Let K = +—2L—k € K’. Then

(k)]
1 1
0= o turtxuy
|14(9)] ()]
1 10/ 1 1 * k|
=0 u; k [* 1 %

Without loss of generality, we may assume u; € U,. But one may easily check that
if i is the unique index such that a;ié = 1 then for all u € U, we have u;,; = 0 for
io # 7, and u;,;, = 1. It follows 099 = ki, is bounded. Now we may instead assume
that uy € U,—1. Checking that elements u € U,-1 satisfy ui;, = 0 for 7 # jo and

Ujjo = 1, a similar calculation establishes the second claim. U

COROLLARY 3.4.1. Assume o # 1. Then for N large enough (in terms of h, t

and ty) the term K, in the geometric side of the Kuznetsov formula vanishes.
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PROOF. We use expression (2.44) for the Archimedean part of the orbital integrals.
Let K = t; Supp(fso)ty'. Then K, # 0 only if there exists u,u; € U(R) such that
uodu; € K. Now if 0 = J then by Remark 2.5.12 the only elements § contributing to
K satisfy
%
1
|
for some non-zero integers k, m. In particular, for N > Cx, by Lemma 3.4.1, we get

K; =0. If 0 = 518987 then by Remark 2.5.13 the only elements ¢ contributing to

K121 Satisfy

Nm
* k

—==0 =
n0) o

for some non-zero integers k, m. In particular, for N > Ck, by Lemma 3.4.1, we
get K191 = 0. Finally, if 0 = s1s9s; then by Remark 2.5.14 the only elements ¢

contributing to Ksi9 satisfy

for some non-zero integers k, m. But in this case we have j, = 1 in Lemma 3.4.1, and

thus we see that again for N > C, we have Koo = 0. L]

5. The equidistribution result

We are now ready to prove our equidistribution result. We start with a technical

functional analysis lemma.
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LEMMA 3.5.1. Let (I1, dw) be a measured space. Let K be a compact space endowed

with a Borel probability measure p. Consider a non-negative measurable function

w: II = Rsg and a sequence (X(N))n=o of measurable sets X (N) C II such that for
all N we have

0< / w(w) dw < 0.
X(N)
Assume that there is a measurable function & : Il — K and a dense subspace W

of the space €(K) of complex-valued continuous functions on K endowed with the

sup-norm topology, such that for all g € W we have

. fX(N) w(w)g o S(w) dw
(3:5) 1\}1—1& fX(N)w(w) dw - /Kgd,u.

Then the same holds for all g € €(K).

PRrOOF. Observe that since w is non-negative we have

fX(N) w(w)g o §(w)dw

(36) fX(N) w(w) dw

< [[glloo-

It suffices to show that the left hand side of (3.5) is defined for all g € €(K). Indeed,
both side will then define continuous linear functionals on €(K’), that coincide on the
dense subspace W, hence are equal. Now if g = w + % with «w+ € W and || || < €,

it follows by linearity from (3.6) that the limits of all the converging subsequences

fX(N) w(w)goS (w) dw
of ( Jx(ny w(@) dw

) are in an e-neighborhood of [ 5 wdp, and in particular
N>0

they are at a distance at most 2¢ from each other. But by density of W, this holds
for arbitrary € > 0, and hence all the converging subsequences have the same limit,

which implies that the left hand side of (3.5) is well defined. O
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To state the equidistribution result, let us set up some notations.

DEFINITION 3.5.1. Define II to be the set of pairs w = (7, u) where 7 is a unitary
automorphic representation of GSp,(Ag) and u € m. We endow II with a measure dw
in the following way. Recall from § 4.3 that m ~ . (o,) for some parabolic subgroup P
(with possibly P=G), v € ia} (in case P = G, this space is {0}) and o a representation
occurring discretely in the spectrum of Mp. We then put dw = dv®|-[ry,, 4. @ |,

where dv is the Haar measure on ia}, | is the counting measure on Ry, disc

’ |RJ\/IP,disc

and | - |, is the counting measure on the space of 7.

DEFINITION 3.5.2. For any integer N and each Dirichlet character w, we define
X(N,w) C II to be the set of pairs' @ = (7, E(-,u,v)) where 7 ~ #(0,) has
central character w and u € 9,1, the basis of the B;(N)-invariant subspace of 7 (o))

described in § 4.4.

DEFINITION 3.5.3. Fix a matrix t € A", and a Paley-Wiener function h on ac
such that h(v,;) > 0 for all spectral parameters v,. Given w = (7, u) € II, define a

spectral weight
w(@) = [Wy (u)(t)[*h(vr).

REMARK 3.5.1. The existence of a Paley-Wiener function h on ac such that
h(vz) > 0 for all spectral parameters v, and fX(N ) w(m)dr > 0 for N large enough

1s proved in Corollary 3.5.1 below.

REMARK 3.5.2. According to the Lapid-Mao Conjecture, when t = 1 and 7 is
cuspidal, the weight w(w) should be related to L(1,m, Ad), the value at 1 of the adjoint

Irecall that the discrete spectrum corresponds to P = G, in which case we have v = 0, 7 = Ip(m,)
and E(-,u,v) = u.
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L-function of w. Chen and Ichino have proved that the Lapid-Mao conjecture holds
for automorphic representations w of GSp, such that T is a principal series and 7
has squarefree paramodular conductor (see [CI19, Theorem 2.1]). In particular, since
B(N) is contained in the paramodular subgroup of level N, when N is squarefree and

w =1 we have

2 o—c ‘W Vy, 17¢
w0 =27 it T s
for all uw € €(N,w), where

o W (v,1,v) is the normalised Jacquet integral defined in (2.25),

1 of m 1s stable,

2 if mis endoscopic,

"

1 if vt Noo,

o O(m,) = Ifé’(é) ifv=p| N,

K2*4 if v =00

DEFINITION 3.5.4. Let p be a prime. Fix an integer N coprime to p and a
Dirichlet character w modulo N such that w(p) = 1. For 7 ~ ), 7, an automorphic
representation of GSp,(Ag) and u € 7, define §,(7) = (a,(u), By(u)) € ¥ as the
Satake parameters of the local representation m,. Finally, define a measure puny on %

as the push-forward of the measure w(w)dw on X (N,w) along &,.

Our main results say that, as N gets large, the Satake parameters at p of the whole
Bj(N)-invariant generic spectrum, suitably weighted, equidistribute with respect to

the Sato-Tate measure.
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THEOREM 3.5.1. Fix a prime number p. For each integer N coprime to p,
pick a Dirichlet character wy modulo N such that wy(p) = 1. For brevity, set
X(N)=X(N,wy). Then the probability measure uN;@)'uN converges weakly to the

Sato-Tate measure (3.2) as N tends to infinity. This means that for any continuous

Q-invariant function g on C* we have

: fX(N) w(@)g (ap(u), Bp(u)) dw
(3.7) Jim [T - / g A s

REMARK 3.5.3. The proof shows that when g is a fized Laurent polynomial,

identity (3.7) is actually an equality for N large enough.

REMARK 3.5.4. A more interesting result would be that the Satake parameters of
Maaf forms, weighted with the same weight, equidistribute with respect to the Sato-
Tate measure. This is equivalent to showing that the part of the measure uN;(%,uN
that is supported on the continuous spectrum converges weakly to zero. This is work

M Progress

PROOF. We apply the Kuznetsov formula with n =1, m; = (1,1), my = (p', p/),
ty =tand to = tty,,. Let c=2i4+ 7 mod 2 and b = w and a = b — 7, so that

c<a<band
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Let (m,u) € X(N). Then %, (u) defines a factorizable vector in the global Whittaker

model of 7, hence for all g € G(A) we have

Wy(u)(g) = [ Wulen).

where for each place v, W), is a certain vector in the Whittaker model of m, that is
fixed by the corresponding local component of By(N). For v prime, v # p, we have
tm, € Bi(p™) and hence W, (t;!) = W,(1). For v = p, we have B;(p™) = K, hence
by uniqueness of the K)-fixed vector we must have W, (t;}) = Wy(1)Z4p.c(v, By).
So we get

W () (taten,) = Wy (u) () Wap.e(op, By),

and the spectral side of the Kuznetsov formula is

s = /X o P Tanloy(w), 50

The identity contribution in the geometric side is

: : .= d
K1 = d¢i)=(0,0) /a h(—iv)W (iv,t, )W (—iv, t, w)m

In particular, taking (i, j) = (0,0), since Vol(B;(N)) = %, by Corollary 3.4.1

K

we have that for N large enough

. . .= dv
(3.8) C/X(N) w(w)dw = [K : B(N)] /a* h(—w)W(w,t,¢)W(—w,t,@b)m.
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It follows that for all ¢ < a < b with ¢ € {0,1} we have for N large enough (in terms
of a, b, c)

fX(N) w(w)Wap(0p(u), By(u)) dw B lifa=b=c=0
Jxon w(@) dw

0 otherwise.

In view of Lemma 3.3.3, the equidistribution statement (3.7) holds when ¢ = %, .,
and by linearity it still holds when g belongs to the subspace W of €(%) that is

spanned by (%4 p.c)e<e<s . The result follows from Lemma 3.5.1 and Lemma 3.3.2. [

ce{0,1}

LEMMA 3.5.2. For e > 0 define B. = {g € Mat4(R) : ||g|| < €}, and BE = {kg"k :
lgll < e,k € Ko} where |[g|| = max;; |gi;| and S = {g € Sps(R),g'g € 1 + BX}.
Then we have

KooSeKoo = Sea

and for €,0 > 0 small enough we have
Sgl g S5e

and

Se - S5 C 14 Byss+166)-

PROOF. The first claim is obvious from the fact that K., = {g € Sp,(R) : g'g =

1}. Now observe that if g'g € 1 + B, then we have

(3.9) lga"gll < 4(1 + €)lall.
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for all a € Maty(R). In particular, taking ¢ = 0, we obtain
(3.10) B. C BX C B,..

The second claims then follows from the Taylor expansion of the map g+ g at

g = 1. Now let g, € S, g2 € S5. Then by (3.10) we have

(g182) ' (8182) € g1(1 + Bus) '8 C 1+ Bus + g1Bus ' 81
and the result follows using (3.9). O

COROLLARY 3.5.1. Fiz t € A+. Let F : Sp,(R) — R satisfying the following

hypothesis

e F'is smooth and bi-K . -tnvariant,
e Supp(F) = S¢ as defined in Lemma 3.5.2.

e F only assumes non-negative values.

Let foo = F*xF, where F*(g) = F(g™'). Then we have fos (vx) > 0 for all automorphic
representation ™ of GSp, and if € > 0 is small enough then for all N large enough

and for all Dirichlet character w modulo N we have fX(N) w(w) dw > 0.

PROOF. We have R(F* x F') = R(F*) o R(F), and R(F™*) is the adjoint of R(F),
hence the eigenvalues of R(f.) are non-negative. But those are precisely h(v,). Now

by (3.8) it suffices to show that

/ h(—io W (i, £, YW (—iv,t, ) — 20,

o c(iv)e(—iv)
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By Theorem 2.3.4, this is the same as showing that

[t i da 20
U(R)

By definition of f.., this integral equals

/ / F(y’l)F(y’lt’lut)E(u) dy du.
U(R) JSp,(R)

Now by Lemma 3.5.2, if both y™! and y~'t~'ut € Supp(F) = S, then t~lut € 1+ By,

and hence ¥ (u) =1+ O(e||t7!] - [|t]]). So it suffices to show that

/ / F(y H)F(y 't ut)dydu # 0.
U(R) JSpy(R)

But if both y=" € Supp(F) and t~'ut € S C Supp(F) then by Lemma 3.5.2 we
have y~'t~'ut € S, = Supp(F). Since S, and U(R) N S have positive measure and

since F' is non-negative, this proves the claim. 0]



APPENDIX A

Absolute convergence of the kernel

For completeness, we give a proof of Proposition 2.4.8. The proof is directly
adapted from [KL13|, where the case of GL, was treated. Here we give a proof for
general connected reductive algebraic groups over Q. We start with recalling some

definition and facts from [Art05].

1. Langlands spectral decomposition

Fix Py a minimal parabolic subgroup. Let K = Hp K, be a compact subgroup
of G(A) such that K, is a maximal compact subgroup of the connected component
G°(R) of 1 in G(R) and K, is a maximal compact subgroup of G(Q,) for all prime p,
and such that we have G = Py K. Many of the definitions we gave in Chapter 2 can

be directly adapted with this choice of K.

DEeFINITION A.1.1. We let A¢(Q) be the largest central subgroup of G over Q
that is a Q-split torus. Let A5(R) be the connected component of identity in Ag(R).
Then we have G(A) = AL(R)G'(A), where G'(A) = {g € G(A), Hs(g) = 0} and Hg

was defined (in the particular case of G = GSp,) in Section 2.4 of Chapter 2.

DEFINITION A.1.2. If P is a parabolic subgroup with Levi decomposition P =
NpMp, we let Ap be the centre of Mp, and we let ap be the Lie algebra of Ap(R) N

G(A).
161
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REMARK A.1.1. Note that this definition differs from [Art05]. This is because

we are interested in the spectral decomposition of L?(Aq(R)G(Q)\G(A)) instead of
L*(G(Q\G(A)).

DEFINITION A.1.3. If P and P’ are two standard parabolic subgroups, let Q(ap, ap:)
be the set of distinct linear isomorphisms from ap C ap, onto ap: C ap, obtained by
restriction of elements in the Weyl group Q. If Q(ap, ap/) is non-empty, we say that

P and P’ are associated.

REMARK A.1.2. In the case of GSp,, two standard parabolic subgroups are associ-

ated if and only if they are equal.

For each pair of standard parabolic subgroups P and P’ and for each s € Q(ap, ap),
there is an intertwining operator between the representations fp(v) and Fp/(sv)

(whose definition is given in § 4.1).

DEFINITION A.1.4. Let s € Q(ap, ap:), let ¢ € 7, and let v € a}(C) with large
enough real part. Then for every x € G(A) the following integral converges absolutely
to an analytic function in v
(M (5,0)6)(x) = exp(—{sv+ppr, Hpr(x))) / 6~ 'nx) exp({v-+pp, Hp(s~'nx))) dn,

s(A)

where N, = (Np:NsNps™1)\Nps (here we identify s € Q(ap, ap/) with a representative
in G(Q)).

Now fix a finite index subgroup I' = Hp I, of K with I'o = Ko, and a character
of Ag(A) that is trivial on Ag(Q)Ag(R) and on Ag(A)NT. We denote by L?(w) the
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subspace of L?(A¢(R)G(Q)/G(A)) consisting of functions that are right-I-invariant
and that have central character w. The spectral decomposition of L?(w) is due to

Langlands.

THEOREM A.1.1. (1) Suppose ¢ € Y. Then E(x,d,v) and M(s,v)é can
be analytically continued to meromorphic functions of v € ap(C) that satisfy

the functional equations
E(x, M(s,0), sv) = E(x, ému)
and
M (s189,v) = M(s1, s9v) M (52, V).

Moreover both E(x,¢,v) and M(s,v)¢ are analytic in v € ia}, and M(s,v)
extends to a unitary operator from Hp to Hp:.
(2) For each association class P of standard parabolic subgroups, let Lo be the

Hilbert space of families of measurable functions F' = (Fp)peg with

Fp ial — 5 ()

satisfying
Fpr(sv) = M(s,v) Fp(v)
and
_ 1
1P =Y = [ IRy <o,
peg P i
where

np = Z #Q(GP,GP')-

Pe»
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Then the mapping that sends F' to the function S(F') defined for x € G(A) by
S(F)(z) = Z i/* E(x, Fp(v),v)dv,
PeP iap
defined for when Fp is a smooth compactly supported function on ia}p with
values in a finite dimensional subspace of 7, extends to a unitary mapping
from &g onto a closed G(A)-invariant subspace L%, (w) of L*(w). Moreover,

we have an orthogonal direct sum decomposition

Lw) = P Li(w).
P
2. The geometric kernel and the spectral kernel

In this section we prove the absolute convergence of the spectral expression of the

kernel associated to a function f satisfying the following.

AssumMPTION A.l1. Consider a measurable function f : G(A) — C with the

following properties.

o f(gz) =w(z)f(g) for all z € Ag(A) and g € G(A),
e f is compactly supported modulo Ag,
e f is left and right I'-invariant,

o [ = foofsn where f, is smooth and has its support contained in G°(R).

Associated to f we have the operator R(f) acting on L?(w) by

RO = [ St dy = / K, y)o(y) dy,

G(A GQ\G(4)
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where

= > flxly)

YeG(Q)

and G = Ag\G. Since f is continuous and compactly supported modulo Ag(A) and
since G(Q) is a discrete subset of G(A), the series defining K(x,y) is locally finite
and hence the latter is a continuous function on G(A) x G(A). By Theorem A.1.1

the corresponding operator Fp(f, ) on H#} (w) given by

Tolfv)b = / (07 v)0dy

satisfies R(f)o S = S o Ip(f). In addition, we have a convolution product f * g given
by

Fea = [ sty by
and we have R(f % g) = R(f) o R(g). Finally, the adjoint of R(f) is R(f*), where
f*(g) = Flg™").

LEMMA A.2.1. Fiz an association class P of parabolic subgroups. Let J = (Jp)peo
be a family of compact sets Jp C 1a}p satisfying the symmetry condition sJp = Jp:
for all s € Q(ap,ap). Moreover, for each P € P let Qp be a finite set of irreducible
representations m with central character w, occurring in Ry, gisc, and with the property
that if m € Qp then there exists 7' € Qpr such that M(s,v)Ip(m,) = Fp(nl,) for all
s € Qap,ap) and all v € iap'. Finally, for each m € Qp, let B, be an orthonormal

Inote that the space of p (m,) does not depend on v and hence this condition does not actually
depend on v either.
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basis of the finite dimensional space Ip(wl) consisting of elements of 7. Define

ng’()(7 y) = Z ni/J Z Z E(x, Ip(v, flu,v)E(y, Ip(v, flu,v)dv.

pep T TEQp uERBy

Then there exists a bounded linear operator T on L% (w) such that for all ¢ € L% (w)
that is bounded and have compact support modulo G(Q)Ag(A) we have

GQ\G(a)

(Toth) () = / K9 (x, y)ily) dy

for almost all x € G(A).

PROOF. Let 39? be the subspace of Z% consisting of those F' such that Fp has
it image contained in P, ., 7t for all P € 2. Let Let 3;)@ be the subspace of L
consisting of those F' such that Fp has it image contained in @néQp 7l forall P € 2,

so we have the orthogonal decomposition
Lo =F3 L0

Next, let ffg ' be the subspace of Qg consisting of those F' such that Fp is supported

on Jp for all P € &. Then we have the orthogonal decomposition
23 =230 22",

where °Jp = ia}p — Jp. Taking the image of these decomposition by S, by Theo-
rem A.1.1 we have

Ly=LS ® LY
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and

J <
where L% = S(Z%) € L%(w) and so on. Define Sol + La(w) — 237 vy
1 J
S l¢if ¢ € LY
0if o€ LY or p € L 2.

Explicitly, Séi] = S;l o Py where Py is the orthogonal projection of L%,(w) onto Lg,

and for ¢ € Lg we have

Silqb pv)ifveJp
stapny =4 IS

0 otherwise.

The restriction of Séi, to Lg,’“] is an isomorphism of Hilbert spaces. Moreover
Pa.s=(S5.7)" ° 84,
is the orthogonal projection of L% (w) onto Lg;‘], and hence we have
Soy=5"oPy,.

Also note that we have S™' o Py = PQ o S71, where f’Q is the orthogonal projection
of L4 onto 3;2. Define

Top = Py oR(f*f")o Py,
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Then T is bounded because || Te| < ||[R(f * f)|| < || f * f*|l1 by [KLO6, p. 140].

Now for 91,1y € L% (w) bounded compactly supported we have

(Totpr, tha) = (Pu 0 R(f * [7) 0 Py, ¥2)
= (R(f") o Pos¢1, R(f") o Po.st2)
= (Pg,s o R(f")¢1, Po,y o R(f*)2)
= (57" o Py o R(f*)i1,S7" 0 Py,y o R(f*)4s)
= <5¢31J o R(f*)¥r, Sgly o R(f*)t2)
o 57 o Py o RO (57 0 Pao B n)p)

Pe?/’
/J (Poo S o R(f*Yin)p. (Po 0 S o R(f* i) ) du
Pe@ P
=> E /J (Pgo Ip(f*,v) o (S7"n)p, Py o Ip(f*,v) o (S "1)p) dv
Pep P
> ST ) e, Ip(f, 1)) (S 2) p, Ip(f, v)u) dv
J
PGQ’ P reQp ueBr

/J Z Z (U1, EC, Ip(f,v)u, v)) (¢, E(, Ip(f,v)u,v)) dv

WEQP UE%‘K

- / RS (x y) (y) ) dy dx.
(G(Q\G(A))?

The interchange of summation and integration order is justified because Eisenstein
series are continuous, Jp is compact, the u-sum is finite, and 1y, 15 are bounded with

compact support modulo Ag(A)G(Q). O

LEMMA A.2.2. For each association class of parabolic subgroups P, fix J and @

as in Lemma A.2.1, and let Ty be the corresponding bounded linear operator. Let



2. THE GEOMETRIC KERNEL AND THE SPECTRAL KERNEL 169
T = > 4Te. Then for all ¢ € L*(w) bounded and compactly supported modulo
G(Q)Ac(A) we have

(T, ) < (R(f* 7)Y, ).

PROOF. For each class & let Py be the orthogonal projection of L?(w) onto
L% (w). For each irreducible representation m ¢ Qp with central character w, fix an
orthonormal basis %, of J,(m,)". Thus J, &, is an orthonormal basis of 7 (w).

By the proof of Lemma A.2.1 above, we have

(Top, ) = Z / ZZ| (-, Ip(f,v)u,v)* dv

PGQD P reQp ueRBx

<Z / Z Z| (-, Ip(f, v)u,v)|> dv
PEP]’ ZaP WCRJ\IP disc UEB

SDITY B DI SN[ TS =IO
Pe@ iap WCRMZ, disc UEB~

= (Ppo R(f* )1, Py o R(f*)V)
= (Pg o R(f * [*)V, Pat)

since Py commutes with R(f). O

We shall use the following result from [GGKO03, Lemma 5.2.1].

LEMMA A.2.3. Let X be a Radon measure space, and let T be an operator on
L*(X). Suppose there is a continuous function K(x,y) on X x X such that for all

Y € L*(X) that is bounded and compactly supported we have

Twz/XK(x,y)tﬁ(y)dy
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and

(T, 9) > 0.

Then K(x,x) > 0 for all x € X.

PROPOSITION A.2.1. For each association class of parabolic subgroups P, and for
each irreducible representation m with central character w occurring in R, disc, fit
an orthonormal basis of Ip(m, )" consisting of elements of . For all x € G(A) we

have

Z Z %/ Z Z |E(x, I (v, flu, v)|* dv < Kpope(x, ).

*

P PeP WP 1 u€Bn
PROOF. For each association class of parabolic subgroup &, consider Jg and
Qg as in Lemma A.2.1, and let K@7(x,y) = 3., K277 (x,y). Then K@7(x,y) is
a continuous function on G(A) x G(A) since each Jp is compact, each Qp is finite,
and the Eisenstein series are continuous. The geometric kernel Ky, s (x,y) is also
continuous. By Lemma A.2.2 we have ((R(f * f* — 1))y, v) > 0 for all bounded

Y € L*(w) with compact support. Hence by Lemma A.2.3 we get for all Q, J as above

K (%, %) < Kpupe (%, %).

Hence
1
Z Z n_/ Z Z ’E(X7JP<V7 f)u7 V)F dv = SupKQjJ(va) < Kf*f*<xax)'
7 pegp P Jiap o uea, Q.J

O

The following lemma is due to Duflo and Labesse [DL71] for GLs, see also [Art78,

Lemma 4.1] for the general case.
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LEMMA A.2.4. There exist hy oo, h2.00s N300, 0o SMooth functions on G(R)/Ag(R)
that are bi-K . -invariant, and whose support is contained in G°(R) and is compact

modulo Ag(R), such that foo = hi 0o * ho o + h3 oo * Py oo

PROOF. Same as [KL13, Lemma 6.9] but we use [Art78, Lemma 4.1] instead
of [DL71, L.1.11]. O

LEMMA A.2.5. Fiz a parabolic subgroup P. Let m = ) be an irreducible

p<oo
representation occurring in R, gisc. Then the finite dimensional subspace JP(WOO)K"O
has a basis B, such that for every smooth functions bi-K-invariant function h
on G(R)/Ac(R) whose support is contained in G°(R) and is compact modulo Ag(R),

and for all v € ia}, the elements of B, are eigenfunctions of Fp(h,v).

PROOF. Let V; be the representation space of Fp(m ). We have an orthogonal

decomposition
(A1) V. = @ v,
p

where V, is a irreducible G°(R)-invariant subspaces. By [Kna86, Theorem 8.1]
the dimension of the K.-fixed subspace VPKO in each V, is at most one. When
Vo £ {0}, write V5 = Ce, with [le,|| = 1. Since h is supported on G°(R), we may
apply Proposition 2.3.1 to each representation p of G°(R), obtaining that e, is an
eigenvector of #p(h,v). Note that B, _ = (e,), does not depend on v because both

V, and the K, -fixed subspace VX< are independent of v. 0]

THEOREM A.2.1. Let f satisfying Assumption A.1. Assume that for each parabolic

subgroup P and for each irreducible representation m occurring in Ry, gise, the space
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JP(W)F has an orthonormal basis 98, consisting of factorizable vectors s, ® ug, such
that us € Br., and ug, is a common eigenfunction of all the operators Fp(fan, V)
for v € ap. Then the series

Kups(x,y) = Z Z %/ Z Z |E(x, Ip(v, fu,v)E(y,u,v)| dv

*

P PP Wp 7 ueRB,

converges absolutely and defines a function that is bounded on compact subsets of

G(A) x G(A) and continuous in x and y separately.

PROOF. First, by Lemma A.2.4, we may assume fo = 1 00 * hooo + N300 * Ry oo-

Let T be the function on G(Ag,) defined by

—vof(%) if there exists z € Ag(Ag,) such that g € z['g,

T(g) =
0 otherwise .

Then f = hy * ho + hg * hy, where hy = hy o ffin, h2 = ho oo and similarly for hg and
hy. Moreover if ¢ is right-I'-invariant then we have R(T)¢ = ¢. Thus each function
h; (and a fortiori their convolution) satisfy the same conditions as f. Hence by the
triangle inequality, it suffices to consider the case f = hy % hy. By Lemma A.2.5 for

u € By, we can write Fp(h;,v)u = \j(v)u for all v € ia},. Then we have
E(Xa jP(Va f)ua V) = )‘1<V))‘2(V)E(X7ua V)
thus

E(x, Ip(v, flu,v)E(y,u,v) = \i(v) Ao (V) E(x,u, V) E(y, u, V)

= E(X7 tjP(ya h1>u7 V)E(Y7JP<V7 h;)u,y)
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Now consider any subset Sp of all the irreducible representations 7 occurring in
Ry aisc and any measurable subset Zp of za}. Then by the Cauchy-Schwarz inequality

we have

/ R Z Z |E(x, Ip(v, fu,v)E(y, u,v)| dv
9’ Pegs ia},—Rp

TESp UERBx
1
- Z Z _/ Z Z |E(x, Zp(v, hi)u, v)E(y, Ip(v, hy)u, v)| dv
7 peop 'P Jioh—Rp g5, weam.
%
: ( =[S S BT du>
P Pe@ Wp—Rp 15, uc B,

=

ﬂ'QSP ue%w

S Khl*h’f (X, X)th*hg (y7 y)

by Proposition A.2.1. Since both kernels are continuous, they are in particular
bounded on compact sets, which proves the first part of the theorem. Now let us fix
x € G(A) and prove the continuity of Ks(x,y) in y. Fix an arbitrary compact set
U C G(A). It suffices to show that the series/integral defining K,s(x,y) converges

uniformly in y € U. Let C' an upper bound for Kjs.pn,(y,y) on U. Fix € > 0. Since
S [ S B It un) dv < o
P PegD W 1 uEB.

if Sp is a large enough finite set and Rp is a large enough compact set for all parabolic

subgroup P then

2
€
/’LaP Rp Z Z ‘E(X,jp(l/, hl)U,V)’ dv < @

,@ PegD 7@Sp UEB,
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Therefore by the above,

S Y BT ) Bl )] i

7 pegp T 7gSp uERBx

(S

< (Z S ni / i >N B Ip(v, hy)u,v)| du) Kgeny (v:Y)

7 pep T rgSp uEBx

<e€

— )

which establishes the result. The same reasoning holds after exchanging x and y.

U
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